diff --git a/.vscode/launch.json b/.vscode/launch.json new file mode 100644 index 00000000..969d7369 --- /dev/null +++ b/.vscode/launch.json @@ -0,0 +1,16 @@ +{ + // Use IntelliSense to learn about possible attributes. + // Hover to view descriptions of existing attributes. + // For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387 + "version": "0.2.0", + "configurations": [ + { + "name": "Python Debugger: Current File", + "type": "debugpy", + "request": "launch", + "program": "${file}", + "console": "integratedTerminal", + "justMyCode": false + } + ] +} \ No newline at end of file diff --git a/examples/it/plot_entropy_high_dimensional.py b/examples/it/plot_entropy_high_dimensional.py index a686037e..19a8e5c8 100644 --- a/examples/it/plot_entropy_high_dimensional.py +++ b/examples/it/plot_entropy_high_dimensional.py @@ -29,14 +29,14 @@ # list of estimators to compare metrics = { - "GCMI": get_entropy("gcmi", biascorrect=False), + "GCMI": get_entropy("gc", biascorrect=False), "KNN-3": get_entropy("knn", k=3), "KNN-10": get_entropy("knn", k=10), "Kernel": get_entropy("kernel"), } # number of samples to simulate data -n_samples = np.geomspace(20, 1000, 10).astype(int) +n_samples = np.geomspace(100, 10000, 10).astype(int) # number of repetitions to estimate the percentile interval n_repeat = 10 @@ -152,4 +152,3 @@ def compute_true_entropy(cov_matrix): ) fig.tight_layout() plt.show() -print("Done") diff --git a/examples/it/plot_mi_high_dimensional.py b/examples/it/plot_mi_high_dimensional.py index 7970d1f7..4c409a4b 100644 --- a/examples/it/plot_mi_high_dimensional.py +++ b/examples/it/plot_mi_high_dimensional.py @@ -33,13 +33,13 @@ # list of estimators to compare metrics = { - "GCMI": get_mi("gcmi", biascorrect=False), + "GCMI": get_mi("gc", biascorrect=False), "KNN-3": get_mi("knn", k=3), "KNN-10": get_mi("knn", k=10), } # number of samples to simulate data -n_samples = np.geomspace(20, 1000, 10).astype(int) +n_samples = np.geomspace(1000, 10000, 10).astype(int) # number of repetitions to estimate the percentile interval n_repeat = 10