This repository has been archived by the owner on Nov 10, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 33
/
vae.py
executable file
·135 lines (112 loc) · 4.97 KB
/
vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#!/usr/bin/env python
"""Variational autoencoder.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
from absl import app
from absl import flags
import tensorflow as tf
from lib import data, layers, train, utils, classifiers
FLAGS = flags.FLAGS
class VAE(train.AE):
def model(self, latent, depth, scales, beta):
x = tf.placeholder(tf.float32,
[None, self.height, self.width, self.colors], 'x')
l = tf.placeholder(tf.float32, [None, self.nclass], 'label')
h = tf.placeholder(
tf.float32,
[None, self.height >> scales, self.width >> scales, latent], 'h')
def encoder(x):
return layers.encoder(x, scales, depth, latent, 'ae_enc')
def decoder(h):
return layers.decoder(h, scales, depth, self.colors, 'ae_dec')
encode = encoder(x)
with tf.variable_scope('ae_latent'):
encode_shape = tf.shape(encode)
encode_flat = tf.layers.flatten(encode)
latent_dim = encode_flat.get_shape()[-1]
q_mu = tf.layers.dense(encode_flat, latent_dim)
log_q_sigma_sq = tf.layers.dense(encode_flat, latent_dim)
q_sigma = tf.sqrt(tf.exp(log_q_sigma_sq))
q_z = tf.distributions.Normal(loc=q_mu, scale=q_sigma)
q_z_sample = q_z.sample()
q_z_sample_reshaped = tf.reshape(q_z_sample, encode_shape)
p_x_given_z_logits = decoder(q_z_sample_reshaped)
p_x_given_z = tf.distributions.Bernoulli(logits=p_x_given_z_logits)
ae = 2*tf.nn.sigmoid(p_x_given_z_logits) - 1
decode = 2*tf.nn.sigmoid(decoder(h)) - 1
loss_kl = 0.5*tf.reduce_sum(
-log_q_sigma_sq - 1 + tf.exp(log_q_sigma_sq) + q_mu**2)
loss_kl = loss_kl/tf.to_float(tf.shape(x)[0])
x_bernoulli = 0.5*(x + 1)
loss_ll = tf.reduce_sum(p_x_given_z.log_prob(x_bernoulli))
loss_ll = loss_ll/tf.to_float(tf.shape(x)[0])
elbo = loss_ll - beta*loss_kl
utils.HookReport.log_tensor(loss_kl, 'loss_kl')
utils.HookReport.log_tensor(loss_ll, 'loss_ll')
utils.HookReport.log_tensor(elbo, 'elbo')
xops = classifiers.single_layer_classifier(
tf.stop_gradient(encode), l, self.nclass)
xloss = tf.reduce_mean(xops.loss)
utils.HookReport.log_tensor(xloss, 'classify_latent')
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
ae_vars = tf.global_variables('ae_')
xl_vars = tf.global_variables('single_layer_classifier')
with tf.control_dependencies(update_ops):
train_ae = tf.train.AdamOptimizer(FLAGS.lr).minimize(
-elbo, var_list=ae_vars)
train_xl = tf.train.AdamOptimizer(FLAGS.lr).minimize(
xloss, tf.train.get_global_step(), var_list=xl_vars)
ops = train.AEOps(x, h, l, q_z_sample_reshaped, decode, ae,
tf.group(train_ae, train_xl),
classify_latent=xops.output)
n_interpolations = 16
n_images_per_interpolation = 16
def gen_images():
return self.make_sample_grid_and_save(
ops, interpolation=n_interpolations,
height=n_images_per_interpolation)
recon, inter, slerp, samples = tf.py_func(
gen_images, [], [tf.float32]*4)
tf.summary.image('reconstruction', tf.expand_dims(recon, 0))
tf.summary.image('interpolation', tf.expand_dims(inter, 0))
tf.summary.image('slerp', tf.expand_dims(slerp, 0))
tf.summary.image('samples', tf.expand_dims(samples, 0))
return ops
def main(argv):
del argv # Unused.
batch = FLAGS.batch
dataset = data.get_dataset(FLAGS.dataset, dict(batch_size=batch))
scales = int(round(math.log(dataset.width // FLAGS.latent_width, 2)))
model = VAE(
dataset,
FLAGS.train_dir,
latent=FLAGS.latent,
depth=FLAGS.depth,
scales=scales,
beta=FLAGS.beta)
model.train()
if __name__ == '__main__':
flags.DEFINE_integer('depth', 64, 'Depth of first for convolution.')
flags.DEFINE_integer(
'latent', 16,
'Latent space depth, the total latent size is the depth multiplied by '
'latent_width ** 2.')
flags.DEFINE_integer('latent_width', 4, 'Width of the latent space.')
flags.DEFINE_float('beta', 1.0, 'ELBO KL term scale.')
app.run(main)