This repository has been archived by the owner on Nov 10, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 33
/
classify_fc.py
executable file
·73 lines (57 loc) · 2.28 KB
/
classify_fc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#!/usr/bin/env python
"""Single layer fully connected classifier.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
from absl import app
from absl import flags
import tensorflow as tf
from lib import data, train, utils, classifiers
FLAGS = flags.FLAGS
flags.DEFINE_float('smoothing', -0.1, 'Label smoothing amount.')
class XFullyConnected(train.Classify):
def model(self, smoothing):
x = tf.placeholder(tf.float32,
[None, self.height, self.width, self.colors], 'x')
l = tf.placeholder(tf.float32, [None, self.nclass], 'label_onehot')
ops = classifiers.single_layer_classifier(x, l, self.nclass,
smoothing=smoothing)
ops.x = x
ops.label = l
loss = tf.reduce_mean(ops.loss)
halfway = ((FLAGS.total_kimg << 10) // FLAGS.batch) // 2
lr = tf.train.exponential_decay(FLAGS.lr, tf.train.get_global_step(),
decay_steps=halfway,
decay_rate=0.1)
utils.HookReport.log_tensor(loss, 'xe')
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
opt = tf.train.AdamOptimizer(lr)
ops.train_op = opt.minimize(loss, tf.train.get_global_step())
return ops
def main(argv):
del argv # Unused.
batch = FLAGS.batch
dataset = data.get_dataset(FLAGS.dataset, dict(batch_size=batch))
model = XFullyConnected(
dataset,
FLAGS.train_dir,
smoothing=FLAGS.smoothing)
model.train()
if __name__ == '__main__':
app.run(main)