-
Notifications
You must be signed in to change notification settings - Fork 11
/
model.py
641 lines (540 loc) · 21.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
import torch
import torch.nn as nn
import torch.nn.parallel
from torch.autograd import Variable
from torchvision import models
import torch.utils.model_zoo as model_zoo
import torch.nn.functional as F
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
from miscc.config import cfg
from GlobalAttention import GlobalAttentionGeneral as ATT_NET
# ############## Text2Image Encoder-Decoder #######
class RNN_ENCODER(nn.Module):
def __init__(self, ntoken, ninput=300, drop_prob=0.5,
nhidden=128, nlayers=1, bidirectional=True):
super(RNN_ENCODER, self).__init__()
self.n_steps = cfg.TEXT.WORDS_NUM
self.rnn_type = cfg.RNN_TYPE
self.ntoken = ntoken # size of the dictionary
self.ninput = ninput # size of each embedding vector
self.drop_prob = drop_prob # probability of an element to be zeroed
self.nlayers = nlayers # Number of recurrent layers
self.bidirectional = bidirectional
if bidirectional:
self.num_directions = 2
else:
self.num_directions = 1
# number of features in the hidden state
self.nhidden = nhidden // self.num_directions
self.define_module()
self.init_weights()
def define_module(self):
self.encoder = nn.Embedding(self.ntoken, self.ninput)
self.drop = nn.Dropout(self.drop_prob)
if self.rnn_type == 'LSTM':
# dropout: If non-zero, introduces a dropout layer on
# the outputs of each RNN layer except the last layer
self.rnn = nn.LSTM(self.ninput, self.nhidden,
self.nlayers, batch_first=True,
dropout=self.drop_prob,
bidirectional=self.bidirectional)
elif self.rnn_type == 'GRU':
self.rnn = nn.GRU(self.ninput, self.nhidden,
self.nlayers, batch_first=True,
dropout=self.drop_prob,
bidirectional=self.bidirectional)
else:
raise NotImplementedError
def init_weights(self):
initrange = 0.1
self.encoder.weight.data.uniform_(-initrange, initrange)
# Do not need to initialize RNN parameters, which have been initialized
# http://pytorch.org/docs/master/_modules/torch/nn/modules/rnn.html#LSTM
# self.decoder.weight.data.uniform_(-initrange, initrange)
# self.decoder.bias.data.fill_(0)
def init_hidden(self, bsz):
weight = next(self.parameters()).data
if self.rnn_type == 'LSTM':
return (Variable(weight.new(self.nlayers * self.num_directions,
bsz, self.nhidden).zero_()),
Variable(weight.new(self.nlayers * self.num_directions,
bsz, self.nhidden).zero_()))
else:
return Variable(weight.new(self.nlayers * self.num_directions,
bsz, self.nhidden).zero_())
def forward(self, captions, cap_lens, hidden, mask=None):
# input: torch.LongTensor of size batch x n_steps
# --> emb: batch x n_steps x ninput
emb = self.drop(self.encoder(captions))
#
# Returns: a PackedSequence object
cap_lens = cap_lens.data.tolist()
emb = pack_padded_sequence(emb, cap_lens, batch_first=True)
# #hidden and memory (num_layers * num_directions, batch, hidden_size):
# tensor containing the initial hidden state for each element in batch.
# #output (batch, seq_len, hidden_size * num_directions)
# #or a PackedSequence object:
# tensor containing output features (h_t) from the last layer of RNN
output, hidden = self.rnn(emb, hidden)
# PackedSequence object
# --> (batch, seq_len, hidden_size * num_directions)
output = pad_packed_sequence(output, batch_first=True)[0]
# output = self.drop(output)
# --> batch x hidden_size*num_directions x seq_len
words_emb = output.transpose(1, 2)
# --> batch x num_directions*hidden_size
if self.rnn_type == 'LSTM':
sent_emb = hidden[0].transpose(0, 1).contiguous()
else:
sent_emb = hidden.transpose(0, 1).contiguous()
sent_emb = sent_emb.view(-1, self.nhidden * self.num_directions)
return words_emb, sent_emb
class G_NET(nn.Module):
def __init__(self):
super(G_NET, self).__init__()
ngf = cfg.GAN.GF_DIM
nef = cfg.TEXT.EMBEDDING_DIM
ncf = cfg.GAN.CONDITION_DIM
self.ca_net = CA_NET()
if cfg.TREE.BRANCH_NUM > 0:
self.h_net1 = INIT_STAGE_G(ngf * 16, ncf)
self.img_net1 = GET_IMAGE_G(ngf)
# gf x 64 x 64
if cfg.TREE.BRANCH_NUM > 1:
self.h_net2 = NEXT_STAGE_G(ngf, nef, ncf)
self.img_net2 = GET_IMAGE_G(ngf)
if cfg.TREE.BRANCH_NUM > 2:
self.h_net3 = NEXT_STAGE_G(ngf, nef, ncf)
self.img_net3 = GET_IMAGE_G(ngf)
def forward(self, z_code, sent_emb, word_embs, mask):
"""
:param z_code: batch x cfg.GAN.Z_DIM
:param sent_emb: batch x cfg.TEXT.EMBEDDING_DIM
:param word_embs: batch x cdf x seq_len
:param mask: batch x seq_len
:return:
"""
fake_imgs = []
att_maps = []
c_code, mu, logvar = self.ca_net(sent_emb)
if cfg.TREE.BRANCH_NUM > 0:
h_code1 = self.h_net1(z_code, c_code)
fake_img1 = self.img_net1(h_code1)
fake_imgs.append(fake_img1)
if cfg.TREE.BRANCH_NUM > 1:
h_code2, att1 = \
self.h_net2(h_code1, c_code, word_embs, mask)
fake_img2 = self.img_net2(h_code2)
fake_imgs.append(fake_img2)
if att1 is not None:
att_maps.append(att1)
if cfg.TREE.BRANCH_NUM > 2:
h_code3, att2 = \
self.h_net3(h_code2, c_code, word_embs, mask)
fake_img3 = self.img_net3(h_code3)
fake_imgs.append(fake_img3)
if att2 is not None:
att_maps.append(att2)
return fake_imgs, att_maps, mu, logvar
# ############## G networks ###################
class CA_NET(nn.Module):
# some code is modified from vae examples
# (https://github.com/pytorch/examples/blob/master/vae/main.py)
def __init__(self):
super(CA_NET, self).__init__()
self.t_dim = cfg.TEXT.EMBEDDING_DIM
self.c_dim = cfg.GAN.CONDITION_DIM
self.fc = nn.Linear(self.t_dim, self.c_dim * 4, bias=True)
self.relu = GLU()
def encode(self, text_embedding):
x = self.relu(self.fc(text_embedding))
mu = x[:, :self.c_dim]
logvar = x[:, self.c_dim:]
return mu, logvar
def reparametrize(self, mu, logvar):
std = logvar.mul(0.5).exp_()
if cfg.CUDA:
eps = torch.cuda.FloatTensor(std.size()).normal_()
else:
eps = torch.FloatTensor(std.size()).normal_()
eps = Variable(eps)
return eps.mul(std).add_(mu)
def forward(self, text_embedding):
mu, logvar = self.encode(text_embedding)
c_code = self.reparametrize(mu, logvar)
return c_code, mu, logvar
class GLU(nn.Module):
def __init__(self):
super(GLU, self).__init__()
def forward(self, x):
nc = x.size(1)
assert nc % 2 == 0, 'channels dont divide 2!'
nc = int(nc/2)
return x[:, :nc] * F.sigmoid(x[:, nc:])
def conv1x1(in_planes, out_planes, bias=False):
"1x1 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1,
padding=0, bias=bias)
def conv3x3(in_planes, out_planes):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=1,
padding=1, bias=False)
# Upsale the spatial size by a factor of 2
def upBlock(in_planes, out_planes):
block = nn.Sequential(
nn.Upsample(scale_factor=2, mode='nearest'),
conv3x3(in_planes, out_planes * 2),
nn.BatchNorm2d(out_planes * 2),
GLU())
return block
# Keep the spatial size
def Block3x3_relu(in_planes, out_planes):
block = nn.Sequential(
conv3x3(in_planes, out_planes * 2),
nn.BatchNorm2d(out_planes * 2),
GLU())
return block
class ResBlock(nn.Module):
def __init__(self, channel_num):
super(ResBlock, self).__init__()
self.block = nn.Sequential(
conv3x3(channel_num, channel_num * 2),
nn.BatchNorm2d(channel_num * 2),
GLU(),
conv3x3(channel_num, channel_num),
nn.BatchNorm2d(channel_num))
def forward(self, x):
residual = x
out = self.block(x)
out += residual
return out
class CNN_ENCODER(nn.Module):
def __init__(self, nef):
super(CNN_ENCODER, self).__init__()
if cfg.TRAIN.FLAG:
self.nef = nef
else:
self.nef = 256 # define a uniform ranker
model = models.inception_v3()
url = 'https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth'
model.load_state_dict(model_zoo.load_url(url))
for param in model.parameters():
param.requires_grad = False
print('Load pretrained model from ', url)
# print(model)
self.define_module(model)
self.init_trainable_weights()
def define_module(self, model):
self.Conv2d_1a_3x3 = model.Conv2d_1a_3x3
self.Conv2d_2a_3x3 = model.Conv2d_2a_3x3
self.Conv2d_2b_3x3 = model.Conv2d_2b_3x3
self.Conv2d_3b_1x1 = model.Conv2d_3b_1x1
self.Conv2d_4a_3x3 = model.Conv2d_4a_3x3
self.Mixed_5b = model.Mixed_5b
self.Mixed_5c = model.Mixed_5c
self.Mixed_5d = model.Mixed_5d
self.Mixed_6a = model.Mixed_6a
self.Mixed_6b = model.Mixed_6b
self.Mixed_6c = model.Mixed_6c
self.Mixed_6d = model.Mixed_6d
self.Mixed_6e = model.Mixed_6e
self.Mixed_7a = model.Mixed_7a
self.Mixed_7b = model.Mixed_7b
self.Mixed_7c = model.Mixed_7c
self.emb_features = conv1x1(768, self.nef)
self.emb_cnn_code = nn.Linear(2048, self.nef)
def init_trainable_weights(self):
initrange = 0.1
self.emb_features.weight.data.uniform_(-initrange, initrange)
self.emb_cnn_code.weight.data.uniform_(-initrange, initrange)
def forward(self, x):
features = None
# --> fixed-size input: batch x 3 x 299 x 299
x = nn.Upsample(size=(299, 299), mode='bilinear')(x)
# 299 x 299 x 3
x = self.Conv2d_1a_3x3(x)
# 149 x 149 x 32
x = self.Conv2d_2a_3x3(x)
# 147 x 147 x 32
x = self.Conv2d_2b_3x3(x)
# 147 x 147 x 64
x = F.max_pool2d(x, kernel_size=3, stride=2)
# 73 x 73 x 64
x = self.Conv2d_3b_1x1(x)
# 73 x 73 x 80
x = self.Conv2d_4a_3x3(x)
# 71 x 71 x 192
x = F.max_pool2d(x, kernel_size=3, stride=2)
# 35 x 35 x 192
x = self.Mixed_5b(x)
# 35 x 35 x 256
x = self.Mixed_5c(x)
# 35 x 35 x 288
x = self.Mixed_5d(x)
# 35 x 35 x 288
x = self.Mixed_6a(x)
# 17 x 17 x 768
x = self.Mixed_6b(x)
# 17 x 17 x 768
x = self.Mixed_6c(x)
# 17 x 17 x 768
x = self.Mixed_6d(x)
# 17 x 17 x 768
x = self.Mixed_6e(x)
# 17 x 17 x 768
# image region features
features = x
# 17 x 17 x 768
x = self.Mixed_7a(x)
# 8 x 8 x 1280
x = self.Mixed_7b(x)
# 8 x 8 x 2048
x = self.Mixed_7c(x)
# 8 x 8 x 2048
x = F.avg_pool2d(x, kernel_size=8)
# 1 x 1 x 2048
# x = F.dropout(x, training=self.training)
# 1 x 1 x 2048
x = x.view(x.size(0), -1)
# 2048
# global image features
cnn_code = self.emb_cnn_code(x)
# 512
if features is not None:
features = self.emb_features(features)
return features, cnn_code
class INIT_STAGE_G(nn.Module):
def __init__(self, ngf, ncf):
super(INIT_STAGE_G, self).__init__()
self.gf_dim = ngf
self.in_dim = cfg.GAN.Z_DIM + ncf # cfg.TEXT.EMBEDDING_DIM
self.define_module()
def define_module(self):
nz, ngf = self.in_dim, self.gf_dim
self.fc = nn.Sequential(
nn.Linear(nz, ngf * 4 * 4 * 2, bias=False),
# removing for single instance caption
nn.BatchNorm1d(ngf * 4 * 4 * 2),
GLU())
self.upsample1 = upBlock(ngf, ngf // 2)
self.upsample2 = upBlock(ngf // 2, ngf // 4)
self.upsample3 = upBlock(ngf // 4, ngf // 8)
self.upsample4 = upBlock(ngf // 8, ngf // 16)
def forward(self, z_code, c_code):
"""
:param z_code: batch x cfg.GAN.Z_DIM
:param c_code: batch x cfg.TEXT.EMBEDDING_DIM
:return: batch x ngf/16 x 64 x 64
"""
c_z_code = torch.cat((c_code, z_code), 1)
# state size ngf x 4 x 4
out_code = self.fc(c_z_code)
out_code = out_code.view(-1, self.gf_dim, 4, 4)
# state size ngf/3 x 8 x 8
out_code = self.upsample1(out_code)
# state size ngf/4 x 16 x 16
out_code = self.upsample2(out_code)
# state size ngf/8 x 32 x 32
out_code32 = self.upsample3(out_code)
# state size ngf/16 x 64 x 64
out_code64 = self.upsample4(out_code32)
return out_code64
class NEXT_STAGE_G(nn.Module):
def __init__(self, ngf, nef, ncf):
super(NEXT_STAGE_G, self).__init__()
self.gf_dim = ngf
self.ef_dim = nef
self.cf_dim = ncf
self.num_residual = cfg.GAN.R_NUM
self.define_module()
def _make_layer(self, block, channel_num):
layers = []
for i in range(cfg.GAN.R_NUM):
layers.append(block(channel_num))
return nn.Sequential(*layers)
def define_module(self):
ngf = self.gf_dim
self.att = ATT_NET(ngf, self.ef_dim)
self.residual = self._make_layer(ResBlock, ngf * 2)
self.upsample = upBlock(ngf * 2, ngf)
def forward(self, h_code, c_code, word_embs, mask):
"""
h_code1(query): batch x idf x ih x iw (queryL=ihxiw)
word_embs(context): batch x cdf x sourceL (sourceL=seq_len)
c_code1: batch x idf x queryL
att1: batch x sourceL x queryL
"""
self.att.applyMask(mask)
c_code, att = self.att(h_code, word_embs)
h_c_code = torch.cat((h_code, c_code), 1)
out_code = self.residual(h_c_code)
# state size ngf/2 x 2in_size x 2in_size
out_code = self.upsample(out_code)
return out_code, att
class GET_IMAGE_G(nn.Module):
def __init__(self, ngf):
super(GET_IMAGE_G, self).__init__()
self.gf_dim = ngf
self.img = nn.Sequential(
conv3x3(ngf, 3),
nn.Tanh()
)
def forward(self, h_code):
out_img = self.img(h_code)
return out_img
class G_DCGAN(nn.Module):
def __init__(self):
super(G_DCGAN, self).__init__()
ngf = cfg.GAN.GF_DIM
nef = cfg.TEXT.EMBEDDING_DIM
ncf = cfg.GAN.CONDITION_DIM
self.ca_net = CA_NET()
# 16gf x 64 x 64 --> gf x 64 x 64 --> 3 x 64 x 64
if cfg.TREE.BRANCH_NUM > 0:
self.h_net1 = INIT_STAGE_G(ngf * 16, ncf)
# gf x 64 x 64
if cfg.TREE.BRANCH_NUM > 1:
self.h_net2 = NEXT_STAGE_G(ngf, nef, ncf)
if cfg.TREE.BRANCH_NUM > 2:
self.h_net3 = NEXT_STAGE_G(ngf, nef, ncf)
self.img_net = GET_IMAGE_G(ngf)
def forward(self, z_code, sent_emb, word_embs, mask):
"""
:param z_code: batch x cfg.GAN.Z_DIM
:param sent_emb: batch x cfg.TEXT.EMBEDDING_DIM
:param word_embs: batch x cdf x seq_len
:param mask: batch x seq_len
:return:
"""
att_maps = []
c_code, mu, logvar = self.ca_net(sent_emb)
if cfg.TREE.BRANCH_NUM > 0:
h_code = self.h_net1(z_code, c_code)
if cfg.TREE.BRANCH_NUM > 1:
h_code, att1 = self.h_net2(h_code, c_code, word_embs, mask)
if att1 is not None:
att_maps.append(att1)
if cfg.TREE.BRANCH_NUM > 2:
h_code, att2 = self.h_net3(h_code, c_code, word_embs, mask)
if att2 is not None:
att_maps.append(att2)
fake_imgs = self.img_net(h_code)
return [fake_imgs], att_maps, mu, logvar
# ############## D networks ##########################
def Block3x3_leakRelu(in_planes, out_planes):
block = nn.Sequential(
conv3x3(in_planes, out_planes),
nn.BatchNorm2d(out_planes),
nn.LeakyReLU(0.2, inplace=True)
)
return block
# Downsale the spatial size by a factor of 2
def downBlock(in_planes, out_planes):
block = nn.Sequential(
nn.Conv2d(in_planes, out_planes, 4, 2, 1, bias=False),
nn.BatchNorm2d(out_planes),
nn.LeakyReLU(0.2, inplace=True)
)
return block
# Downsale the spatial size by a factor of 16
def encode_image_by_16times(ndf):
encode_img = nn.Sequential(
# --> state size. ndf x in_size/2 x in_size/2
nn.Conv2d(3, ndf, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
# --> state size 2ndf x x in_size/4 x in_size/4
nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 2),
nn.LeakyReLU(0.2, inplace=True),
# --> state size 4ndf x in_size/8 x in_size/8
nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 4),
nn.LeakyReLU(0.2, inplace=True),
# --> state size 8ndf x in_size/16 x in_size/16
nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 8),
nn.LeakyReLU(0.2, inplace=True)
)
return encode_img
class D_GET_LOGITS(nn.Module):
def __init__(self, ndf, nef, bcondition=False):
super(D_GET_LOGITS, self).__init__()
self.df_dim = ndf
self.ef_dim = nef
self.bcondition = bcondition
if self.bcondition:
self.jointConv = Block3x3_leakRelu(ndf * 8 + nef, ndf * 8)
self.outlogits = nn.Sequential(
nn.Conv2d(ndf * 8, 1, kernel_size=4, stride=4),
nn.Sigmoid())
def forward(self, h_code, c_code=None):
if self.bcondition and c_code is not None:
# conditioning output
c_code = c_code.view(-1, self.ef_dim, 1, 1)
c_code = c_code.repeat(1, 1, 4, 4)
# state size (ngf+egf) x 4 x 4
h_c_code = torch.cat((h_code, c_code), 1)
# state size ngf x in_size x in_size
h_c_code = self.jointConv(h_c_code)
else:
h_c_code = h_code
output = self.outlogits(h_c_code)
return output.view(-1)
# For 64 x 64 images
class D_NET64(nn.Module):
def __init__(self, b_jcu=True):
super(D_NET64, self).__init__()
ndf = cfg.GAN.DF_DIM
nef = cfg.TEXT.EMBEDDING_DIM
self.img_code_s16 = encode_image_by_16times(ndf)
if b_jcu:
self.UNCOND_DNET = D_GET_LOGITS(ndf, nef, bcondition=False)
else:
self.UNCOND_DNET = None
self.COND_DNET = D_GET_LOGITS(ndf, nef, bcondition=True)
def forward(self, x_var):
x_code4 = self.img_code_s16(x_var) # 4 x 4 x 8df
return x_code4
# For 128 x 128 images
class D_NET128(nn.Module):
def __init__(self, b_jcu=True):
super(D_NET128, self).__init__()
ndf = cfg.GAN.DF_DIM
nef = cfg.TEXT.EMBEDDING_DIM
self.img_code_s16 = encode_image_by_16times(ndf)
self.img_code_s32 = downBlock(ndf * 8, ndf * 16)
self.img_code_s32_1 = Block3x3_leakRelu(ndf * 16, ndf * 8)
#
if b_jcu:
self.UNCOND_DNET = D_GET_LOGITS(ndf, nef, bcondition=False)
else:
self.UNCOND_DNET = None
self.COND_DNET = D_GET_LOGITS(ndf, nef, bcondition=True)
def forward(self, x_var):
x_code8 = self.img_code_s16(x_var) # 8 x 8 x 8df
x_code4 = self.img_code_s32(x_code8) # 4 x 4 x 16df
x_code4 = self.img_code_s32_1(x_code4) # 4 x 4 x 8df
return x_code4
# For 256 x 256 images
class D_NET256(nn.Module):
def __init__(self, b_jcu=True):
super(D_NET256, self).__init__()
ndf = cfg.GAN.DF_DIM
nef = cfg.TEXT.EMBEDDING_DIM
self.img_code_s16 = encode_image_by_16times(ndf)
self.img_code_s32 = downBlock(ndf * 8, ndf * 16)
self.img_code_s64 = downBlock(ndf * 16, ndf * 32)
self.img_code_s64_1 = Block3x3_leakRelu(ndf * 32, ndf * 16)
self.img_code_s64_2 = Block3x3_leakRelu(ndf * 16, ndf * 8)
if b_jcu:
self.UNCOND_DNET = D_GET_LOGITS(ndf, nef, bcondition=False)
else:
self.UNCOND_DNET = None
self.COND_DNET = D_GET_LOGITS(ndf, nef, bcondition=True)
def forward(self, x_var):
x_code16 = self.img_code_s16(x_var)
x_code8 = self.img_code_s32(x_code16)
x_code4 = self.img_code_s64(x_code8)
x_code4 = self.img_code_s64_1(x_code4)
x_code4 = self.img_code_s64_2(x_code4)
return x_code4