-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdefect_inference.py
380 lines (335 loc) · 13.7 KB
/
defect_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
# -*- coding: utf-8 -*-
"""
test the image encoder and mask decoder
freeze prompt image encoder
"""
import numpy as np
import matplotlib.pyplot as plt
import os
import scipy.io as sio
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
import sys
from tqdm import tqdm
from skimage import transform
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import monai
from segment_anything import sam_model_registry
import torch.nn.functional as F
import argparse
import random
from datetime import datetime
import shutil
import glob
import cv2
import json
# set seeds
seed = 42
# np.random.seed(seed)
torch.manual_seed(seed)
# random.seed(seed)
torch.cuda.empty_cache()
# torch.distributed.init_process_group(backend="gloo")
# os.environ["OMP_NUM_THREADS"] = "4" # export OMP_NUM_THREADS=4
# os.environ["OPENBLAS_NUM_THREADS"] = "4" # export OPENBLAS_NUM_THREADS=4
# os.environ["MKL_NUM_THREADS"] = "6" # export MKL_NUM_THREADS=6
# os.environ["VECLIB_MAXIMUM_THREADS"] = "4" # export VECLIB_MAXIMUM_THREADS=4
# os.environ["NUMEXPR_NUM_THREADS"] = "6" # export NUMEXPR_NUM_THREADS=6
def calculate_iou(y_hat, y):
intersection = np.logical_and(y_hat, y)
union = np.logical_or(y_hat, y)
iou = np.sum(intersection) / np.sum(union)
return iou
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([251 / 255, 252 / 255, 30 / 255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(
plt.Rectangle((x0, y0), w, h, edgecolor="green", facecolor=(0, 0, 0, 0), lw=2)
)
@torch.no_grad()
def defectsam_inference(medsam_model, img_embed, boxes, H, W):
predicted_masks = np.zeros((img_embed.shape[0], boxes.shape[1], H, W))
for i in range(boxes.shape[1]):
box = boxes[:, i, :]
box_torch = torch.as_tensor(box, dtype=torch.float, device=img_embed.device)
if len(box.shape) == 2:
box_torch = box_torch[:, None, :] # (B, 1, 4)
sparse_embeddings, dense_embeddings = medsam_model.prompt_encoder(
points=None,
boxes=box_torch,
masks=None,
)
low_res_logits, _ = medsam_model.mask_decoder(
image_embeddings=img_embed, # (B, 256, 64, 64)
image_pe=medsam_model.prompt_encoder.get_dense_pe(), # (1, 256, 64, 64)
sparse_prompt_embeddings=sparse_embeddings, # (B, 2, 256)
dense_prompt_embeddings=dense_embeddings, # (B, 256, 64, 64)
multimask_output=False,
)
low_res_pred = torch.sigmoid(low_res_logits) # (1, 1, 256, 256)
low_res_pred = F.interpolate(
low_res_pred,
size=(H, W),
mode="bilinear",
align_corners=False,
) # (1, 1, gt.shape)
low_res_pred = low_res_pred.squeeze().cpu().numpy() # (256, 256)
medsam_seg = (low_res_pred > 0.5).astype(np.uint8)
predicted_masks[:, i, :, :] = medsam_seg
return predicted_masks
class DefectSAM(nn.Module):
def __init__(
self,
image_encoder,
mask_decoder,
prompt_encoder,
):
super().__init__()
self.image_encoder = image_encoder
self.mask_decoder = mask_decoder
self.prompt_encoder = prompt_encoder
# freeze prompt encoder
# for param in self.prompt_encoder.parameters():
# param.requires_grad = False
def forward(self, image, boxes):
image_embedding = self.image_encoder(image) # (B, 256, 64, 64)
predicted_masks = torch.zeros((image.shape[0], boxes.shape[1], image.shape[2], image.shape[3]), device=image.device)
# do not compute gradients for prompt encoder
for i in range(boxes.shape[1]):
box = boxes[:, i, :]
with torch.no_grad():
box_torch = torch.as_tensor(box, dtype=torch.float32, device=image.device)
if len(box_torch.shape) == 2:
box_torch = box_torch[:, None, :] # (B, 1, 4)
sparse_embeddings, dense_embeddings = self.prompt_encoder(
points=None,
boxes=box_torch,
masks=None,
)
low_res_masks, _ = self.mask_decoder(
image_embeddings=image_embedding, # (B, 256, 64, 64)
image_pe=self.prompt_encoder.get_dense_pe(), # (1, 256, 64, 64)
sparse_prompt_embeddings=sparse_embeddings, # (B, 2, 256)
dense_prompt_embeddings=dense_embeddings, # (B, 256, 64, 64)
multimask_output=False,
)
ori_res_masks = F.interpolate(
low_res_masks,
size=(image.shape[2], image.shape[3]),
mode="bilinear",
align_corners=False,
)
predicted_masks[:, i, :, :] = ori_res_masks.squeeze(1)
def inference(self, img_embed, boxes, H, W):
predicted_masks = np.zeros((img_embed.shape[0], boxes.shape[1], H, W))
for i in range(boxes.shape[1]):
box = boxes[:, i, :]
box_torch = torch.as_tensor(box, dtype=torch.float, device=img_embed.device)
if len(box.shape) == 2:
box_torch = box_torch[:, None, :] # (B, 1, 4)
sparse_embeddings, dense_embeddings = self.prompt_encoder(
points=None,
boxes=box_torch,
masks=None,
)
low_res_logits, _ = self.mask_decoder(
image_embeddings=img_embed, # (B, 256, 64, 64)
image_pe=self.prompt_encoder.get_dense_pe(), # (1, 256, 64, 64)
sparse_prompt_embeddings=sparse_embeddings, # (B, 2, 256)
dense_prompt_embeddings=dense_embeddings, # (B, 256, 64, 64)
multimask_output=False,
)
low_res_pred = torch.sigmoid(low_res_logits) # (1, 1, 256, 256)
low_res_pred = F.interpolate(
low_res_pred,
size=(H, W),
mode="bilinear",
align_corners=False,
) # (1, 1, gt.shape)
low_res_pred = low_res_pred.squeeze().cpu().numpy() # (256, 256)
medsam_seg = (low_res_pred > 0.5).astype(np.uint8)
predicted_masks[:, i, :, :] = medsam_seg
return predicted_masks
class DefectDataset(Dataset):
def __init__(self, data_root='defect/test_set.txt', label_dir='defect/data/labels_coco/labels',
height=1024, width=1024, heating_num=50, batchsize=8, bbox_shift=10):
file = open(data_root, 'r')
self.data_path = [line.strip() for line in file]
file.close()
self.label_dir = label_dir
self.height = height
self.width = width
self.heating_num = heating_num
self.batchsize = batchsize
self.bbox_shift = bbox_shift
print(f"number of samples: {len(self.data_path)}")
def __len__(self):
return len(self.data_path)
def __getitem__(self, index):
# load npy image (1024, 1024, 3), [0,1]
file_path = self.data_path[index]
basename = file_path.split('/')[-1].split('.')[0]
label_path = os.path.join(self.label_dir,'{}_label.png'.format(basename))
label_img = cv2.imread(label_path, 0)
scale_x = self.width / label_img.shape[1]
scale_y = self.height / label_img.shape[0]
label_img = cv2.resize(label_img, (self.width, self.height))
label_img[label_img < 120] = 120
label_img[label_img != 120 ] = 0 #0,black,1 white
label_img[label_img != 0] = 255 #label convert
label_img = label_img / 255.
data_struct = sio.loadmat(file_path)
data = data_struct['data']
t_len = data.shape[2]
sub = data[:, :, -1]
data = data[:, :, self.heating_num:min(t_len, self.heating_num+160)]
data = data - np.tile(sub[:, :, np.newaxis], (1, 1, data.shape[2]))
random_indices = np.random.choice(data.shape[2], size=self.batchsize, replace=False)
data = data[:, :, random_indices]
data = cv2.resize(data, (self.width, self.height))
data = np.transpose(data, (2, 0, 1))
data = data / 255.
labels = np.tile(label_img[np.newaxis, :, :], (data.shape[0], 1, 1))
data = np.tile(data[:, np.newaxis, :, :], (1, 3, 1, 1))
label_json = os.path.join(self.label_dir,'{}_label.json'.format(basename))
bboxes = []
with open(label_json, 'r') as fp:
label_coord = json.load(fp)
num_classes = len(label_coord['shapes'])
masked_image = np.zeros((labels.shape[0], num_classes, labels.shape[1], labels.shape[2]))
for i in range(num_classes):
shapes = label_coord['shapes'][i]
points = shapes['points']
x_min, y_min = points[0][0], points[0][1]
x_max, y_max = points[1][0], points[1][1]
x_min = int(x_min * scale_x)
x_max = int(x_max * scale_x)
y_min = int(y_min * scale_y)
y_max = int(y_max * scale_y)
x_min = max(0, x_min - random.randint(0, self.bbox_shift))
x_max = min(self.width, x_max + random.randint(0, self.bbox_shift))
y_min = max(0, y_min - random.randint(0, self.bbox_shift))
y_max = min(self.height, y_max + random.randint(0, self.bbox_shift))
bboxes.append([x_min, y_min, x_max, y_max])
masked_image[:, i, y_min:y_max, x_min:x_max] = labels[:, y_min:y_max, x_min:x_max]
bboxes = np.array(bboxes)
bboxes = np.tile(bboxes[np.newaxis, :, :], (data.shape[0], 1, 1))
return (
torch.tensor(masked_image).float(),
torch.tensor(data).float(),
torch.tensor(bboxes).float(),
basename,
)
parser = argparse.ArgumentParser()
parser.add_argument(
"-i",
"--tr_npy_path",
type=str,
default="defect/data",
help="path to training npy files; two subfolders: gts and imgs",
)
parser.add_argument(
"-o",
"--seg_path",
type=str,
default="defect/output",
help="path to the segmentation folder",
)
parser.add_argument(
"--box",
type=list,
default=[10,200,100,250], #[95, 255, 190, 350]
help="bounding box of the segmentation target",
)
parser.add_argument("--device", type=str, default="cuda:0", help="device")
parser.add_argument(
"-chk",
"--checkpoint",
type=str,
default="weights/defect_vit_b.pth",
help="path to the trained model",
)
parser.add_argument("-num_workers", type=int, default=4)
parser.add_argument("-model_type", type=str, default="vit_b")
parser.add_argument("-work_dir", type=str, default="./work_dir")
parser.add_argument("-width", type=int, default=1024)
parser.add_argument("-height", type=int, default=1024)
parser.add_argument("-heating_num", type=int, default=50)
parser.add_argument("-sample_rate", type=int, default=4)
args = parser.parse_args()
device = torch.device(args.device)
medsam_model = sam_model_registry[args.model_type](checkpoint=args.checkpoint)
medsam_model = medsam_model.to(device)
medsam_model.eval()
test_dataset = DefectDataset(data_root='defect/test_set.txt', height=args.height, width=args.width,
heating_num=args.heating_num, batchsize=args.sample_rate)
print("Number of training samples: ", len(test_dataset))
test_dataloader = DataLoader(
test_dataset,
batch_size=1,
shuffle=False,
num_workers=args.num_workers,
pin_memory=True,
)
IOU_plane = []
IOU_R = []
R_type = ['036g', '029g', '035g', '012g']
for step, (labels, data, bboxes, names_temp) in enumerate(test_dataloader):
data = torch.flatten(data, start_dim=0, end_dim=1)
labels = torch.flatten(labels, start_dim=0, end_dim=1)
bboxes = torch.flatten(bboxes, start_dim=0, end_dim=1)
boxes_np = bboxes.detach().cpu().numpy()
labels, data = labels.to(device), data.to(device)
with torch.no_grad():
image_embedding = medsam_model.image_encoder(data)
defectsam_seg = defectsam_inference(medsam_model, image_embedding, boxes_np, args.height, args.width)
# print('medsam', medsam_seg.shape)
# print('data', data.shape)
# print('label', labels.shape)
labels = labels.cpu().numpy()
data = data.cpu().numpy()
for i in range(data.shape[0]):
label_img = labels[0]
label_img = label_img.astype(bool)
pre_img = defectsam_seg[i]
pre_img = pre_img.astype(bool)
y = label_img[0]
y_hat = pre_img[0]
for j in range(label_img.shape[0]):
y = np.logical_or(y, label_img[j])
for j in range(pre_img.shape[0]):
y_hat = np.logical_or(y_hat, pre_img[j])
IOU = calculate_iou(y_hat, y)
if names_temp[0] in R_type:
IOU_R.append(IOU)
else:
IOU_plane.append(IOU)
print('avg plane IOU', sum(IOU_plane)/len(IOU_plane))
print('avg R IOU', sum(IOU_R)/len(IOU_R))
# for i in range(data.shape[0]):
# fig = plt.figure(figsize=(10, 10))
# ax = fig.add_subplot(111)
# img = data[i].cpu().numpy()
# img = img.transpose(1, 2, 0)
# # img = data_np[0].astype(float)
# ax.imshow(img)
# print(len(medsam_seg))
# for mask in medsam_seg[i]:
# show_mask(mask, ax, random_color=False)
# # for box in boxes_np[0]:
# # show_box(box, ax)
# ax.axis("off")
# # plt.show()
# plt.tight_layout()
# plt.savefig('defect/output/MedSAM/{}_{}.png'.format(names_temp[0], i))
# plt.shxianow()
# break