-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalg_fibonacci.cc
80 lines (64 loc) · 1.54 KB
/
alg_fibonacci.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#include <iostream>
#include <vector>
// Fibonacci series by top-down recursion.
// Time complexity: O(2^n).
// Space complexity: O(n).
int FibonacciRecur(int n) {
if (n <= 1)
return n;
return FibonacciRecur(n - 1) + FibonacciRecur(n - 2);
}
// Helper function for FibonacciMemo().
int FibonacciMemoUtil(int n, std::vector<int>& T) {
if (T[n] > 0)
return T[n];
if (n <= 1)
return n;
T[n] = FibonacciMemoUtil(n - 1, T) + FibonacciMemoUtil(n - 2, T);
return T[n];
}
// Fibonacci series by top-down memoization.
// Time complexity: O(n).
// Space complexity: O(n).
int FibonacciMemo(int n) {
std::vector<int> T(n + 1, 0);
T[0] = 0;
T[1] = 1;
return FibonacciMemoUtil(n, T);
}
// Fibonacci series by bottom-up dynamic programming.
// Time complexity: O(n).
// Space complexity: O(n).
int FibonacciDp(int n) {
std::vector<int> T(n + 1, 0);
T[0] = 0;
T[1] = 1;
if (n <= 1)
return n;
for (int i = 2; i <= n; i++) {
T[i] = T[i - 1] + T[i - 2];
}
return T[n];
}
// Fibonacci series by bottom-up iteration w/ optimizaed space.
// Time complexity: O(n).
// Space complexity: O(1).
int FibonacciIter(int n) {
if (n <= 1)
return n;
int a = 0;
int b = 1;
for (int i = 2; i <= n; i++) {
b = a + b;
a = b - a;
}
return b;
}
int main() {
int n = 20;
std::cout << "Recur: " << FibonacciRecur(n) << std::endl;
std::cout << "Memo: " << FibonacciMemo(n) << std::endl;
std::cout << "DP: " << FibonacciDp(n) << std::endl;
std::cout << "Iter: " << FibonacciIter(n) << std::endl;
return 0;
}