Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

replace secant method with Newton method for zero-doppler time computation #64

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
37 changes: 20 additions & 17 deletions sarsen/apps.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,24 +10,20 @@

logger = logging.getLogger(__name__)


SPEED_OF_LIGHT = 299_792_458.0 # m / s
from scipy.constants import speed_of_light


def simulate_acquisition(
dem_ecef: xr.DataArray,
position_ecef: xr.DataArray,
pos: xr.DataArray,
azimuth_time: Optional[xr.DataArray] = None,
include_variables: Container[str] = (),
**kwargs,
) -> xr.Dataset:
"""Compute the image coordinates of the DEM given the satellite orbit."""
orbit_interpolator = orbit.OrbitPolyfitIterpolator.from_position(position_ecef)
position_ecef = orbit_interpolator.position()
velocity_ecef = orbit_interpolator.velocity()

acquisition = geocoding.backward_geocode(dem_ecef, position_ecef, velocity_ecef)

acquisition = geocoding.backward_geocode(dem_ecef, pos, t0=azimuth_time)
slant_range = (acquisition.dem_distance**2).sum(dim="axis") ** 0.5
slant_range_time = 2.0 / SPEED_OF_LIGHT * slant_range
slant_range_time = 2.0 / speed_of_light * slant_range

acquisition["slant_range_time"] = slant_range_time

Expand All @@ -39,19 +35,19 @@ def simulate_acquisition(

for data_var_name in acquisition.data_vars:
if include_variables and data_var_name not in include_variables:
acquisition = acquisition.drop_vars(data_var_name) # type: ignore
acquisition = acquisition.drop_vars(data_var_name)

# drop coordinates that are not associated with any data variable
for coord_name in acquisition.coords:
if all(coord_name not in dv.coords for dv in acquisition.data_vars.values()):
acquisition = acquisition.drop_vars(coord_name) # type: ignore
acquisition = acquisition.drop_vars(coord_name)

return acquisition


def map_simulate_acquisition(
dem_ecef: xr.DataArray,
position_ecef: xr.DataArray,
pos: xr.DataArray,
template_raster: xr.DataArray,
correct_radiometry: Optional[str] = None,
) -> xr.Dataset:
Expand All @@ -70,7 +66,7 @@ def map_simulate_acquisition(
simulate_acquisition,
dem_ecef,
kwargs={
"position_ecef": position_ecef,
"pos": pos,
"include_variables": include_variables,
},
template=acquisition_template,
Expand All @@ -90,16 +86,23 @@ def do_terrain_correction(
logger.info("pre-process DEM")

dem_ecef = xr.map_blocks(
scene.convert_to_dem_ecef, dem_raster, kwargs={"source_crs": dem_raster.rio.crs}
scene.convert_to_dem_ecef, dem_raster, kwargs={
"source_crs": dem_raster.rio.crs}
)
dem_ecef = dem_ecef.drop_vars(dem_ecef.rio.grid_mapping)

logger.info("simulate acquisition")

template_raster = dem_raster.drop_vars(dem_raster.rio.grid_mapping) * 0.0


orbit_ecef = product.state_vectors()
pos = orbit.OrbitPolyfitIterpolator.from_position(
orbit_ecef, poly_type='polynomial', deg=min(14, orbit_ecef.azimuth_time.size - 5))

pos.coefficients = pos.coefficients.assign_attrs({"referenceTime": pos.epoch, "scaleTime": 1e-9})

acquisition = map_simulate_acquisition(
dem_ecef, product.state_vectors(), template_raster, correct_radiometry
dem_ecef, pos.coefficients, template_raster, correct_radiometry
)

simulated_beta_nought = None
Expand Down
135 changes: 52 additions & 83 deletions sarsen/geocoding.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,103 +2,72 @@

See: https://sentinel.esa.int/documents/247904/0/Guide-to-Sentinel-1-Geocoding.pdf/e0450150-b4e9-4b2d-9b32-dadf989d3bd3
"""
import functools
from typing import Any, Callable, Optional, Tuple, TypeVar

import numpy as np
import numpy.typing as npt
import numpy.polynomial.polynomial as poly
import xarray as xr

TimedeltaArrayLike = TypeVar("TimedeltaArrayLike", bound=npt.ArrayLike)
FloatArrayLike = TypeVar("FloatArrayLike", bound=npt.ArrayLike)


def secant_method(
ufunc: Callable[[TimedeltaArrayLike], Tuple[FloatArrayLike, FloatArrayLike]],
t_prev: TimedeltaArrayLike,
t_curr: TimedeltaArrayLike,
diff_ufunc: float = 1.0,
diff_t: np.timedelta64 = np.timedelta64(0, "ns"),
) -> Tuple[TimedeltaArrayLike, TimedeltaArrayLike, FloatArrayLike, Any]:
"""Return the root of ufunc calculated using the secant method."""
# implementation modified from https://en.wikipedia.org/wiki/Secant_method
f_prev, _ = ufunc(t_prev)

# strong convergence, all points below one of the two thresholds
while True:
f_curr, payload_curr = ufunc(t_curr)

# the `not np.any` construct let us accept `np.nan` as good values
if not np.any((np.abs(f_curr) > diff_ufunc)):
break

t_diff: TimedeltaArrayLike
p: TimedeltaArrayLike
q: FloatArrayLike

t_diff = t_curr - t_prev # type: ignore
p = f_curr * t_diff # type: ignore
q = f_curr - f_prev # type: ignore

# t_prev, t_curr = t_curr, t_curr - f_curr * np.timedelta64(-148_000, "ns")
t_prev, t_curr = t_curr, t_curr - np.where(q != 0, p / q, 0) # type: ignore
f_prev = f_curr

# the `not np.any` construct let us accept `np.nat` as good values
if not np.any(np.abs(t_diff) > diff_t):
break

return t_curr, t_prev, f_curr, payload_curr


# FIXME: interpolationg the direction decreses the precision, this function should
# probably have velocity_ecef_sar in input instead
def zero_doppler_plane_distance(
dem_ecef: xr.DataArray,
position_ecef_sar: xr.DataArray,
direction_ecef_sar: xr.DataArray,
azimuth_time: TimedeltaArrayLike,
dim: str = "axis",
) -> Tuple[xr.DataArray, Tuple[xr.DataArray, xr.DataArray]]:
dem_distance = dem_ecef - position_ecef_sar.interp(azimuth_time=azimuth_time)
satellite_direction = direction_ecef_sar.interp(azimuth_time=azimuth_time)
plane_distance = (dem_distance * satellite_direction).sum(dim, skipna=False)
return plane_distance, (dem_distance, satellite_direction)

MAXITER = 10

def backward_geocode(
dem_ecef: xr.DataArray,
position_ecef: xr.DataArray,
velocity_ecef: xr.DataArray,
azimuth_time: Optional[xr.DataArray] = None,
pos: xr.DataArray,
t0: xr.DataArray | np.datetime64 | None = None,
dim: str = "axis",
diff_ufunc: float = 1.0,
conv_th: float = 1.0e-6,
) -> xr.Dataset:
direction_ecef = (
velocity_ecef / xr.dot(velocity_ecef, velocity_ecef, dims=dim) ** 0.5
)

zero_doppler = functools.partial(
zero_doppler_plane_distance, dem_ecef, position_ecef, direction_ecef
)

if azimuth_time is None:
azimuth_time = position_ecef.azimuth_time
t_template = dem_ecef.isel({dim: 0}).drop_vars(dim)
t_prev = xr.full_like(t_template, azimuth_time.values[0], dtype=azimuth_time.dtype)
t_curr = xr.full_like(t_template, azimuth_time.values[-1], dtype=azimuth_time.dtype)
assert pos.attrs.get("referenceTime", None) is not None, "orbit reference time not defined"
assert pos.attrs.get("scaleTime", None) is not None, "orbit scaling time not defined"

if (t0 is not None):
if isinstance(t0, xr.DataArray):
assert t0.size == dem_ecef.isel({dim: 0}).size, "number of guess points different from dem_ecef size"

t = ((t0 - pos.referenceTime) * pos.scaleTime).astype(float)
else:
t = xr.full_like(dem_ecef.isel({dim: 0}).drop_vars(dim), (t0 - pos.referenceTime)*pos.scaleTime, dtype=float)
else:
t = xr.full_like(dem_ecef.isel({dim: 0}).drop_vars(dim), 0, dtype=float)

# compute orbit polynomial derivatives
vel = xr.DataArray(poly.polyder(pos, 1), dims=["degree", dim])
acc = xr.DataArray(poly.polyder(vel, 1), dims=["degree", dim])

vel = vel.assign_coords({"degree": np.arange(vel.degree.size)})
acc = acc.assign_coords({"degree": np.arange(acc.degree.size)})

for k in range(MAXITER):
# compute start point
p = xr.polyval(t, pos)
v = xr.polyval(t, vel)
a = xr.polyval(t, acc)

# compute range vector
r = p - dem_ecef

# update time
F = (v*r).sum(dim=dim)
F1 = (a*r).sum(dim=dim)+(v*v).sum(dim=dim)
delta = (F / F1)

maxcorr = np.abs(delta).max().values
if (maxcorr < conv_th):
break

t = t - delta

# NOTE: dem_distance has the associated azimuth_time as a coordinate already
_, _, _, (dem_distance, satellite_direction) = secant_method(
zero_doppler,
t_prev,
t_curr,
diff_ufunc,
direction_ecef = (
v / xr.dot(v, v, dims=dim) ** 0.5
)

acquisition = xr.Dataset(
data_vars={
"dem_distance": dem_distance,
"satellite_direction": satellite_direction.transpose(*dem_distance.dims),
"azimuth_time": (t / pos.scaleTime).astype("timedelta64[ns]")+pos.referenceTime,
"dem_distance": -r,
"satellite_direction": direction_ecef,
}
)
return acquisition.reset_coords("azimuth_time")

return acquisition
62 changes: 46 additions & 16 deletions sarsen/orbit.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
from typing import Any, Optional, Tuple
from typing import Any, Optional, Tuple, Literal

import attrs
import numpy as np
Expand All @@ -8,19 +8,25 @@
S_TO_NS = 10**9


def polyder(coefficients: xr.DataArray) -> xr.DataArray:
def polyder(coefficients: xr.DataArray, poly_type: str) -> xr.DataArray:
# TODO: raise if "degree" coord is not decreasing
derivative_coefficients = coefficients.isel(degree=slice(1, None)).copy()
for degree in coefficients.coords["degree"].values[:-1]:
derivative_coefficients.loc[{"degree": degree - 1}] = (
coefficients.loc[{"degree": degree}] * degree
)
if poly_type == 'polynomial':
for degree in coefficients.coords["degree"].values[:-1]:
derivative_coefficients.loc[{"degree": degree - 1}] = (
coefficients.loc[{"degree": degree}] * degree
)
elif poly_type == 'hermite':
v = [np.polynomial.hermite.Hermite(coefficients.isel(
axis=i).values).deriv(m=1).coef for i in range(3)]
derivative_coefficients.data = np.vstack(v).T
return derivative_coefficients


@attrs.define
class OrbitPolyfitIterpolator:
coefficients: xr.DataArray
poly_type: str
epoch: np.datetime64
interval: Tuple[np.datetime64, np.datetime64]

Expand All @@ -31,6 +37,7 @@ def from_position(
dim: str = "azimuth_time",
deg: int = 5,
epoch: Optional[np.datetime64] = None,
poly_type: Literal['polynomial', 'hermite'] = 'polynomial',
interval: Optional[Tuple[np.datetime64, np.datetime64]] = None,
) -> "OrbitPolyfitIterpolator":
time = position.coords[dim]
Expand All @@ -45,10 +52,17 @@ def from_position(
interval = (time.values[0], time.values[-1])

data = position.assign_coords({dim: time - epoch})
polyfit_results = data.polyfit(dim=dim, deg=deg)
if poly_type == 'polynomial':
polyfit_results = data.polyfit(dim=dim, deg=deg)
elif poly_type == 'hermite':
v = [np.polynomial.hermite.hermfit(((time - epoch)/10**9).astype('float64'),
data.values[i], deg=deg) for i in range(3)]
polyfit_results = xr.Dataset(
{'axis': [0, 1, 2], 'degree': np.arange(deg, -1, -1)})
polyfit_results = polyfit_results.assign({'polyfit_coefficients':
(['degree', 'axis'], np.vstack(v).T)})
# TODO: raise if the fit is not good enough

return cls(polyfit_results.polyfit_coefficients, epoch, interval)
return cls(polyfit_results.polyfit_coefficients, poly_type, epoch, interval)

def azimuth_time_range(self, freq_s: float = 0.02) -> xr.DataArray:
azimuth_time_values = pd.date_range(
Expand All @@ -65,14 +79,22 @@ def azimuth_time_range(self, freq_s: float = 0.02) -> xr.DataArray:
def position(
self, time: Optional[xr.DataArray] = None, **kwargs: Any
) -> xr.DataArray:

if time is None:
time = self.azimuth_time_range(**kwargs)
assert time.dtype.name in ("datetime64[ns]", "timedelta64[ns]")

position: xr.DataArray
position = xr.polyval(time - self.epoch, self.coefficients)
position = position.assign_coords({time.name: time})
return position.rename("position")
if self.poly_type == 'polynomial':
position = xr.polyval(time - self.epoch, self.coefficients)
position = position.assign_coords(
{time.name: time}).rename('position')
elif self.poly_type == 'hermite':
v = [np.polynomial.hermite.hermval(((time - self.epoch)/10**9).astype('float64'),
self.coefficients.isel(axis=i)) for i in range(3)]
position = xr.DataArray(data=np.vstack(v), dims=['axis', time.name],
coords={'axis': [0, 1, 2], time.name: time}, name='position')
return position

def velocity(
self, time: Optional[xr.DataArray] = None, **kwargs: Any
Expand All @@ -81,9 +103,17 @@ def velocity(
time = self.azimuth_time_range(**kwargs)
assert time.dtype.name in ("datetime64[ns]", "timedelta64[ns]")

velocity_coefficients = polyder(self.coefficients) * S_TO_NS
velocity_coefficients = polyder(
self.coefficients, self.poly_type) * S_TO_NS

velocity: xr.DataArray
velocity = xr.polyval(time - self.epoch, velocity_coefficients)
velocity = velocity.assign_coords({time.name: time})
return velocity.rename("velocity")
if self.poly_type == 'polynomial':
velocity = xr.polyval(time - self.epoch, velocity_coefficients)
velocity = velocity.assign_coords(
{time.name: time}).rename('velocity')
elif self.poly_type == 'hermite':
v = [np.polynomial.hermite.hermval(((time - self.epoch)/10**9).astype('float64'),
velocity_coefficients.isel(axis=i)) for i in range(3)]
velocity = xr.DataArray(data=np.vstack(v), dims=['axis', time.name],
coords={'axis': [0, 1, 2], time.name: time}, name='velocity')
return velocity
3 changes: 2 additions & 1 deletion sarsen/scene.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,8 @@ def convert_to_dem_3d(
) -> xr.DataArray:
_, dem_raster_x = xr.broadcast(dem_raster, dem_raster.coords[x])
dem_raster_y = dem_raster.coords[y]
dem_3d = make_nd_dataarray([dem_raster_x, dem_raster_y, dem_raster], dim=dim)
dem_3d = make_nd_dataarray(
[dem_raster_x, dem_raster_y, dem_raster], dim=dim)
return dem_3d.rename("dem_3d")


Expand Down
Loading