Skip to content

Latest commit

 

History

History
99 lines (88 loc) · 3.26 KB

README.md

File metadata and controls

99 lines (88 loc) · 3.26 KB

Object-Detection-level2-9

P-Stage level-2 object detection competition. (이미지 내 쓰레기 객체 감지 및 분류)

9조 하나둘셋Net() Solution

Archive contents

baseline/
├── mmdetection/
│ ├── cascade_rcnn_swin/
| | ├── cascade_rcnn_swin_large.py
| | ├── cascade_rcnn_swin.py
| | ├── cascade_rcnn.py
| | ├── dataset.py
| | ├── runtime.py
| | └── scheduler.py
│ ├── faster_rcnn/
| | ├── faster_rcnn_r152_fpn_dconv_c3-c5_1x_coco.py
| | ├── faster_rcnn_r152_fpn_1x_coco.py
| | ├── faster_rcnn_r50_fpn_1x_coco.py
| | ├── faster_rcnn_r50_fpn.py
| | ├── dataset.py
| | ├── default_runtime.py
| | └── schedule_1x.py
| └── inference.ipynb
├── ensemble/
│ └── Ensemble.ipynb
├── YOLOv5/
│ ├── data/
| | └── coco_trash.yaml
│ ├── runs/
| | ├── hyp.yaml
| | └── opt.yaml
└── inference.ipynb
eda/
├── eda.ipynb
└── eda-2.ipynb
utils/
|  └── inference_checker/
|    └── main.py
|  └── trainset_check/
└──  └── main.py
  • baseline/mmdetection/cascade_rcnn: config files for Cascade R-CNN model
  • baseline/mmdetection/faser_rcnn: config files for Faster R-CNN model
  • baseline/mmdetection/inference.ipyb: inference code for mmdetection library
  • baseline/ensemble/Ensemble.ipynb: ensemble code
  • baseline/YOLOv5/data/coco_trash.yaml: converted Trash dataset to YOLO data form
  • baseline/YOLOv5/runs: config file of our model
  • baseline/YOLOv5/inferece.ipynb: inference code for YOLOv5 library
  • eda/eda.ipynb: result of EDA
  • eda/eda-2.ipynb: another result of EDA
  • utils/inference_chcker/main.py: python program for visualization of result of inference
  • utils/trainset_check/main.py: python program for visualization of training set

Requirements

  • Linux version 4.4.0-59-generic
  • Python >= 3.8.5
  • PyTorch >= 1.7.1
  • conda >= 4.9.2
  • tensorboard >= 2.4.1

Hardware

  • CPU: Intel(R) Xeon(R) Gold 5220 CPU @ 2.20GHz
  • GPU: Tesla V100-SXM2-32GB

Reference

git clone https://github.com/open-mmlab/mmdetection.git : install mmdetection library
git clone https://github.com/ultralytics/yolov5.git : install YOLOv5 library.

Training

mmdetection

  • mmdetection 라이브러리 clone 후 configs file 실행
    example
  • cd mmdetection
  • python tools/train.py baseline/mmdetection/cascade_rcnn/cascade_rcnn_swin_large.py

YOLOv5
example

  • cd YOLOv5
  • python train.py --img 1024 --batch 4 --epochs 50 --data baseline/data/coco_trash.yaml --weights yolov5x6.pt

Ensemble

  • baseline/ensemble/Ensemble.ipynb 파일 실행
  • target folder 생성 후 ensemble 하고자 하는 파일 target1.csv, target2.csv 형식으로 저장
  • ipynb 파일 run (Weighted Boxes Fusion)

Tools

inference_checker

cd utils/inference_checker
python main.py
open submission file (command or control + O) image

trainset_check

cd utils/treainset_check
python main.py
image