diff --git a/modules/gapi/include/opencv2/gapi/imgproc.hpp b/modules/gapi/include/opencv2/gapi/imgproc.hpp index 4faf5e1178fb..760d530b6da7 100644 --- a/modules/gapi/include/opencv2/gapi/imgproc.hpp +++ b/modules/gapi/include/opencv2/gapi/imgproc.hpp @@ -305,7 +305,7 @@ according to the specified border mode. The function does actually compute correlation, not the convolution: -\f[\texttt{dst} (x,y) = \sum _{ \stackrel{0\leq x' < \texttt{kernel.cols},}{0\leq y' < \texttt{kernel.rows}} } \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )\f] +\f[\texttt{dst} (x,y) = \sum _{ \substack{0\leq x' < \texttt{kernel.cols}\\{0\leq y' < \texttt{kernel.rows}}}} \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )\f] That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip the kernel using flip and set the new anchor to `(kernel.cols - anchor.x - 1, kernel.rows - @@ -342,7 +342,7 @@ The function smooths an image using the kernel: where -\f[\alpha = \fork{\frac{1}{\texttt{ksize.width*ksize.height}}}{when \texttt{normalize=true}}{1}{otherwise}\f] +\f[\alpha = \begin{cases} \frac{1}{\texttt{ksize.width*ksize.height}} & \texttt{when } \texttt{normalize=true} \\1 & \texttt{otherwise} \end{cases}\f] Unnormalized box filter is useful for computing various integral characteristics over each pixel neighborhood, such as covariance matrices of image derivatives (used in dense optical flow