-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstreamlit.py
152 lines (116 loc) · 4.7 KB
/
streamlit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import streamlit as st
import altair as alt
import pandas as pd
from io import StringIO
import numpy as np
import automatic_ecg_diagnosis_master.predict as predict
import google.generativeai as palm
import google.ai.generativelanguage as gen_lang
import matplotlib.pyplot as plt
import time
from image_from_dcm import generate_waveform, plot_ecg
from dcm_to_hd5 import convert_dicom_to_hdf5
import copy
st.set_option('deprecation.showPyplotGlobalUse', False)
#configuration
np.set_printoptions(suppress=True)
palm.configure(api_key='')
models = [m for m in palm.list_models() if 'generateText' in m.supported_generation_methods]
model = models[0].name
def call_api(age, sex, data):
global model
prompt = """Pretend you are a cardiologist.You have an ECG interpreting machine learning model that classified a patient's ECG data and provided percentage likelihoods for each condition 1dAVb, RBBB, LBBB, SB, AF, ST.
Here are what the acronyms mean:
1dAVb: 1st degree AV block
RBBB: right bundle branch block
LBBB: left bundle branch block
SB: sinus bradycardia
AF: atrial fibrillation
ST: sinus tachycardia
If a patient had the percentage likelihood of each condition below,
what would you recommend about the patient's further tests and/or treatment?
This patient is """ + str(age) +""" years old and """ + sex + """.
These are percentages so for example, 0.13239485 means 13%.
1dAVb: """ + str(data[0]) + """
RBBB: """+ str(data[1]) + """
LBBB: """+ str(data[2]) + """
SB: """+ str(data[3]) +"""
AF: """ + str(data[4]) + """
ST: """+ str(data[5])
print(prompt)
completion = palm.generate_text(
model=model,
prompt=prompt,
safety_settings=[
{
"category": gen_lang.HarmCategory.HARM_CATEGORY_MEDICAL,
"threshold": gen_lang.SafetySetting.HarmBlockThreshold.BLOCK_NONE,
},],
temperature=0,
# The maximum length of the response
max_output_tokens=800,)
return completion.result
def take_recommendation(result):
split = result.split("**Recommendations:**",1)
if len(split) > 1:
return "**Recommendations:**" + split[1]
else:
split = result.split("**Recommendation:**",1)
if len(split) > 1:
return "**Recommendations:**" + split[1]
else:
return result
## streamlight code
st.title('ECG Analyzer')
st.subheader('A tool to analyze and view ECG data, backed by a deep neural network for classification', divider='blue')
uploaded_file = st.file_uploader("Upload your DICOM file (.dcm)", type=['dcm'])
col1, col2, = st.columns(2)
with col1:
age = st.number_input("Patient age", min_value = 0, max_value = 120, value=60)
with col2:
sex = st.selectbox("Patient sex", ["Male", "Female"])
labels = [ "1dAVb", "RBBB", "LBBB", "SB", "AF", "ST"]
#makes the prediction
if uploaded_file is not None:
st.session_state.disabled = False
submit_button = st.button('Submit', key='submit', disabled=st.session_state.get("disabled", True))
diagnosis = ["1st degree AV block",
"Right bundle branch block",
"Left bundle branch block" ,
"Sinus bradycardia",
"Atrial fibrillation",
"Sinus tachycardia" ]
if submit_button:
copy_of_upload = copy.deepcopy(uploaded_file)
with st.spinner('Analyzing data...'):
convert_dicom_to_hdf5(uploaded_file, "./automatic_ecg_diagnosis_master/data/ecg_tracings")
data = predict.make_prediction(path_to_hdf5 = "./automatic_ecg_diagnosis_master/data/ecg_tracings1.hdf5",
path_to_model = "./automatic_ecg_diagnosis_master/model/model.hdf5")
result = call_api(age, sex, data)
st.success('Done!')
recommendation = take_recommendation(result)
st.write("#")
st.markdown(recommendation)
st.write("#")
print(result)
st.markdown("**Predicted Diagnosis Likelihood:**")
percent_data = np.round(data * 100.0, 2).astype(np.float16)
# Bottom panel is a bar chart of weather type
source = pd.DataFrame({
'Diagnosis': labels,
'Likelihood': percent_data,
'Percentage': data,
'Diagnosis Name':diagnosis
})
chart = alt.Chart(source).mark_bar().encode(
x='Diagnosis',
y=alt.Y('Likelihood', scale=alt.Scale(domain=[0, 100])),
tooltip=[ alt.Tooltip('Diagnosis Name'), alt.Tooltip('Percentage', format='.1%')]
).configure_mark(
color="#e9a56b"
)
st.altair_chart(chart, theme="streamlit", use_container_width=True)
st.markdown("**ECG Output:**")
waveform = generate_waveform(copy_of_upload)
plot = plot_ecg(waveform)
st.pyplot(plot)