-
-
Notifications
You must be signed in to change notification settings - Fork 120
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Feature request] Custom Engine for Openrouter #345
Comments
Hi, buddy! I managed to create a custom engine with Groq and its API. At first, I wanted to create a new class in the "engine" folder called I also tried to create a custom engine using the "custom" option, but I encountered many errors. If you want to create your custom engine, follow these steps:
Here’s the code showing how the modification turned out; you can use it as a guide: import json
from .. import EbookTranslator
from ..engines.base import Base
from ..engines.languages import google
try:
from http.client import IncompleteRead
except ImportError:
from httplib import IncompleteRead
load_translations()
class ClaudeTranslate(Base):
name = 'Groq'
alias = 'Groq (Groq)'
lang_codes = Base.load_lang_codes(google)
endpoint = 'https://api.groq.com/openai/v1/chat/completions'
api_key_hint = 'sk-ant-xxxx'
# https://docs.anthropic.com/claude/reference/errors
api_key_errors = ['401', 'permission_error']
concurrency_limit = 1
request_interval = 12
request_timeout = 30.0
# prompt = (
# 'You are a meticulous translator who translates any given content. '
# 'Translate the given content from <slang> to <tlang> only. Do not '
# 'explain any term or answer any question-like content.')
prompt = (
'You are a specialist translator tasked with translating the provided text from <slang> to <tlang>. '
'You must do this as accurately as possible, being cautious and meticulous, and taking the necessary time to ensure the highest quality translation. '
'Respect the context of the content and do not generate any additional information. '
'You should not add explanations or comments, only return the translated text directly. '
'In the case of technical or specialized terms, such as those used in programming, keep them in their original language if necessary for proper understanding of the text.'
)
models = [
'distil-whisper-large-v3-en',
'llava-v1.5-7b-4096-preview',
'gemma2-9b-it',
'llama-3.2-90b-text-preview',
'llama-3.2-11b-vision-preview',
'llama-3.2-3b-preview',
'whisper-large-v3',
'llama-3.2-11b-text-preview',
'llama3-8b-8192',
'mixtral-8x7b-32768',
'llama-3.2-1b-preview',
'llama3-groq-8b-8192-tool-use-preview',
'llama-3.1-8b-instant',
'llama-guard-3-8b',
'llama-3.1-70b-versatile',
'llama3-70b-8192',
'llama3-groq-70b-8192-tool-use-preview',
'gemma-7b-it']
model = 'llama3-8b-8192'
samplings = ['temperature', 'top_p']
sampling = 'temperature'
temperature = 1.0
top_p = 1.0
top_k = 1
stream = True
def __init__(self):
Base.__init__(self)
self.endpoint = self.config.get('endpoint', self.endpoint)
self.prompt = self.config.get('prompt', self.prompt)
if self.model is not None:
self.model = self.config.get('model', self.model)
self.sampling = self.config.get('sampling', self.sampling)
self.temperature = self.config.get('temperature', self.temperature)
self.top_p = self.config.get('top_p', self.top_p)
self.top_k = self.config.get('top_k', self.top_k)
self.stream = self.config.get('stream', self.stream)
def _get_prompt(self):
prompt = self.prompt.replace('<tlang>', self.target_lang)
if self._is_auto_lang():
prompt = prompt.replace('<slang>', 'detected language')
else:
prompt = prompt.replace('<slang>', self.source_lang)
# Recommend setting temperature to 0.5 for retaining the placeholder.
if self.merge_enabled:
prompt += (' Ensure that placeholders matching the pattern'
'{{id_\\d+}} in the content are retained.')
return prompt
def _get_headers(self):
return {
'Content-Type': 'application/json',
'Authorization': 'Bearer %s' % self.api_key,
'User-Agent': 'Ebook-Translator/%s' % EbookTranslator.__version__
}
def _get_data(self, text):
return {
'model': self.model,
'messages': [
{'role': 'system', 'content': self._get_prompt()},
{'role': 'user', 'content': text}
],
}
def translate(self, text):
data = self._get_data(text)
sampling_value = getattr(self, self.sampling)
data.update({self.sampling: sampling_value})
return self.get_result(
self.endpoint, json.dumps(data), self._get_headers(),
method='POST', stream=self.stream, callback=self._parse)
def _parse(self, data):
if self.stream:
return self._parse_stream(data)
return json.loads(data)['choices'][0]['message']['content']
def _parse_stream(self, data):
while True:
try:
line = data.readline().decode('utf-8').strip()
except IncompleteRead:
continue
except Exception as e:
raise Exception(
_('Can not parse returned response. Raw data: {}')
.format(str(e)))
if line.startswith('data:'):
chunk = json.loads(line.split('data: ')[1])
if chunk.get('type') == 'message_stop':
break
if chunk.get('type') == 'content_block_delta':
yield str(chunk.get('delta').get('text')) |
Here is the custom engine recipe you can refer to. Please replace {
"name": "OpenRouter",
"languages": {
"source": {
"English": "en"
},
"target": {
"German": "de"
}
},
"request": {
"url": "https://openrouter.ai/api/v1/chat/completions",
"method": "POST",
"headers": {
"Content-Type": "application/json",
"Authorization": "Bearer YOUR_OPENROUTER_API_KEY"
},
"data": {
"model": "openai/gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "Translate this content from <slang> to <tlang>: <text>."
}
]
}
},
"response": "response['choices'][0]['content']"
} |
I tried using ChatGPT to help create a custom engine for OpenRouter, but I wasn't successful in my attempts. It would be fantastic if you could either integrate it directly or provide a script for a Custom Engine that can be used with OpenRouter's API, especially for people like me who aren't skilled in programming. This would be particularly helpful since OpenRouter offers many models that are more affordable compared to using the OpenAI API. Thank you very much!
The text was updated successfully, but these errors were encountered: