-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathRateEqns.py
153 lines (117 loc) · 5.79 KB
/
RateEqns.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
##########################################################
### Program to simulate laser rate equations in Python ###
############### Niall Boohan 2018 ########################
############### [email protected] ###########################
##########################################################
### Theory and equations sourced from:
# Title: Extraction of DFB laser rate equation parameters for system simulation purposes
# Authors: J. C. Cartledge and R. C. Srinivasan
# DOI: 10.1109/50.580827
# URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=580827&isnumber=12618
### Import necessary libraries ###
from scipy.integrate import ode
import numpy as np
import matplotlib.pyplot as plt
### Select calculation ###
CALC = 0 # 0 is dynamic, 1 is steady-state LI
### Simulation Outputs ###
N = [] # y[0] Carrier concentration
S = [] # y[1] Photon concentration
T = [] # Time array output
N_end = [] # Take the final N value for steady-state behaviour
S_end = [] # Take the final S value for steady-state behaviour
### Simulation input parameters ###
IA = 20 # Pumping current (mA)
I = IA/1e3 # Pumping current (A)
iIA = np.linspace(0, 50, 100) # Generate multiple I for LI curve (mA)
iI = [x/1e3 for x in iIA] # Multiple I (A)
α = 5 # Cavity lasing mode loss (cm^-1)
n = 3.2 # Cavity refractive index
q = 1.6e-19 # Electron charge (C)
L = 400 # Cavity length (um)
w = 2 # Cavity width (um)
h = 100 # Height of active region (nm)
V = L*w*h*(1e-15) # Device volume (cm^3), cm^3 conversion factor
r_l = 0.5 # Left facet reflectivity
r_r = 0.5 # Right facet reflectivity
tn = 1.0e-9 # Carrier relaxation time in seconds (s)
g0 = 1.5e-5 # Gain slope constant (cm^3s^-1)
Nth = 1e18 # Threshold carrier density (cm^-3)
EPS = 1.5e-17 # Gain compression factor (cm^3)
Gamma = 0.15 # Confinement factor
Beta = 1.0e-4 # Spontaneous Emission Factor
h = 6.62607004e-34 # Plank's constant (Js)
c = 2.99792458e8 # SOL (ms^-1)
WL = 1300 # WL (nm)
f = c/(WL/1e9) # Frequency (Hz)
tp = 1/((c/(L*1e-6))*np.log(1/(r_l*r_r))) # Photon round-trip time in cavity (s)
tα = 1/(c*α*100) # Photon lifetime material loss (s)
def call_solv(x):
### Ensures global values of S, N and T are updated from this function ###
global S
global N
global T
### Define equations to be solved ###
def laser_rates(t, y, p):
dy = np.zeros([2])
dy[0] = (x/(q* V)) - (y[0]/tn) - g0*(y[0] - Nth)*(y[1]/(1 + EPS* y[1]))
dy[1] = Gamma* g0* (y[0] - Nth)*(y[1]/(1 + EPS* y[1])) - y[1]/(tp+tα) + (Gamma* Beta* y[0]) / tn
return dy
### Time, initial conditions & add paramters ###
t0 = 0; tEnd = 5e-9; dt = 1e-13 # Time constraints
y0 = [1e16, 0] # Initial conditions [N, S]
Y=[]; T=[] # Create empty lists
p = [I, q, V, tn, g0, Nth, EPS, Gamma, tp, Beta] # Parameters for odes
### Setup integrator with desired parameters ###
# Runge-Kutta must be used as a solver, minimum 4th order
r = ode(laser_rates).set_integrator('dopri5', nsteps = 1e4)
r.set_f_params(p).set_initial_value(y0, t0)
### Simualtion check ###
while r.successful() and r.t+dt < tEnd:
r.integrate(r.t + dt)
Y.append(r.y) # Makes a list of 1d arrays
T.append(r.t)
### Format output ###
Y = np.array(Y) # Convert from list to 2d array
N = Y[:, 0]
S = Y[:, 1]
### Take final value for steady-state LI ###
S_end.append(S[-1:])
N_end.append(N[-1:])
return;
### Dynamic plotting ###
def plot_dynam():
f, axarr = plt.subplots(2, sharex=True) # Two subplots, the axes array is 1-d
axarr[0].plot(T, N, 'g-')
axarr[0].set_ylabel("Carrier conc ($cm^{-3}$)")
axarr[0].set_title('Laser-rate simulation')
axarr[1].plot(T, S, 'b-')
axarr[1].set_ylabel("Photon concentration ($cm^{-3}$)")
axarr[1].set_xlabel("Time (s)")
plt.show()
return;
### Function for post-solver steady-state LI calculations and plotting ###
def plot_SS():
### Post-solver calculations
P = [h*f*((i*V)/tp)*1e3 for i in S_end] # Power output (mW)
QE = [i/j for i,j in zip(P, iIA)] # Convert for quantum efficiency
### Plotting two parameters on one plot ###
fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
ax1.plot(iIA, P, 'g-')
ax2.plot(iIA, QE, 'b-')
ax1.set_xlabel('Current (mA)')
ax1.set_ylabel('Power (mW)', color='g')
ax2.set_ylabel('Quantum efficiency', color='b')
plt.title("Steady-state solution")
plt.show()
return;
### Dynamic mode ###
if(CALC == 0):
call_solv(I)
plot_dynam()
### Steady-state mode ###
if(CALC == 1):
for i in iI:
call_solv(i)
plot_SS()