-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathadamp.py
110 lines (83 loc) · 3.63 KB
/
adamp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
"""
AdamP
Copyright (c) 2020-present NAVER Corp.
MIT license
+ eps inside sqrt
+ init sq with ones instead of zeros
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim.optimizer import Optimizer, required
import math
class AdamP(Optimizer):
def __init__(
self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-10, weight_decay=0, delta=0.1, wd_ratio=0.1, nesterov=False
):
defaults = dict(
lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, delta=delta, wd_ratio=wd_ratio, nesterov=nesterov
)
super(AdamP, self).__init__(params, defaults)
def _channel_view(self, x):
return x.view(x.size(0), -1)
def _layer_view(self, x):
return x.view(1, -1)
def _cosine_similarity(self, x, y, eps, view_func):
x = view_func(x)
y = view_func(y)
return F.cosine_similarity(x, y, dim=1, eps=eps).abs_()
def _projection(self, p, grad, perturb, delta, wd_ratio, eps):
wd = 1
expand_size = [-1] + [1] * (len(p.shape) - 1)
for view_func in [self._channel_view, self._layer_view]:
cosine_sim = self._cosine_similarity(grad, p.data, eps, view_func)
if cosine_sim.max() < delta / math.sqrt(view_func(p.data).size(1)):
p_n = p.data / view_func(p.data).norm(dim=1).view(expand_size).add_(eps)
perturb -= p_n * view_func(p_n * perturb).sum(dim=1).view(expand_size)
wd = wd_ratio
return perturb, wd
return perturb, wd
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad.data
beta1, beta2 = group["betas"]
nesterov = group["nesterov"]
state = self.state[p]
# State initialization
if len(state) == 0:
state["step"] = 0
state["exp_avg"] = torch.zeros_like(p.data)
# state['exp_avg_sq'] = torch.zeros_like(p.data) # original
state["exp_avg_sq"] = torch.ones_like(p.data) # much better init
# Adam
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
state["step"] += 1
bias_correction1 = 1 - beta1 ** state["step"]
bias_correction2 = 1 - beta2 ** state["step"]
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
# denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) # original
denom = exp_avg_sq.add_(group["eps"]).sqrt() / math.sqrt(bias_correction2) # eps inside sqrt
step_size = group["lr"] / bias_correction1
if nesterov:
perturb = (beta1 * exp_avg + (1 - beta1) * grad) / denom
else:
perturb = exp_avg / denom
# Projection
wd_ratio = 1
if len(p.shape) > 1:
perturb, wd_ratio = self._projection(
p, grad, perturb, group["delta"], group["wd_ratio"], group["eps"]
)
# Weight decay
if group["weight_decay"] > 0:
p.data.mul_(1 - group["lr"] * group["weight_decay"] * wd_ratio)
# Step
p.data.add_(perturb, alpha=-step_size)
return loss