Skip to content

Latest commit

 

History

History
123 lines (105 loc) · 4.85 KB

README.md

File metadata and controls

123 lines (105 loc) · 4.85 KB

MaRINeR: Enhancing Novel Views by Matching Rendered Images with Nearby References

Project Page | Paper | Video

This repository contains code for the paper "MaRINeR: Enhancing Novel Views by Matching Rendered Images with Nearby References", ECCV 2024.

Table of Content

Demo

We provide a demo using Google Colab!

Open In Colab

Installation

conda (Recommended) - Clone the repository and then create and activate a mariner conda environment using the provided environment definition:

conda env create -f environment.yml
conda activate mariner

Dependencies

  • torchvision==0.16.0
  • tensorboard===2.17.0
  • lightning==2.2.1
  • opencv-python==4.10.0.84
  • jsonargparse==4.31.0
  • jsonargparse[signatures]>=4.26.1
  • erqa==1.1.2
  • lpips==0.1.4
  • tabulate==0.9.0
  • rich==13.7.1
  • numpy==1.26.4

Data and model weights

We train and test our model on data from LaMAR. Additionally we test the model on data from MeshLoc (renderings), 12Scenes, NeRF, IBRnet (renderings), Nerfacto.

Usage

Prediction

python mariner/main.py predict \
    -c configs/MaRINeR.yml \
    --ckpt_path /path/to/the/project/pretrained_weights/mariner.ckpt \
    --data_dir /path/to/the/demo_data

The data_dir folder needs to contain input and ref subfolders with the corresponding images. Creates the outputs in a subfolder out in data_dir.

/data_dir/
├── input
│   ├── 00000.png
│   ├── 00001.png
│   ├── 00002.png
└── ref
    ├── 00000.png
    ├── 00001.png
    ├── 00002.png

Optional: Larger resolution

For images with resolution much larger than 160, Real-ERSGAN can be used as pipeline extension.

Pull the submodule and download the pretrained weights:

git submodule update --init --recursive
wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P thirdparty/Real-ESRGAN/weights
cd thirdparty/Real-ESRGAN && python setup.py develop

Predict with:

python scripts/predict_scaled.py \
     -c configs/MaRINeR.yml \
     --ckpt_path /path/to/the/project/pretrained_weights/mariner.ckpt \
     --data_dir /path/to/the/demo_data

Training

To train the model with the default config, 32 GB of VRAM are needed. Parameters, such as the batch_size, can be changed in configs/MaRINeR.yml or added as options e.g --batch_size 2.

python mariner/main.py fit \
     -c configs/MaRINeR.yml \
     --train_data_dir /path/to/the/train_data/CAB_merged_LIN/train \
     --test_data_dir /path/to/the/train_data/CAB_merged_LIN/test

Evaluation

Download the test datasets and select one of the available datasets for evaluation:

dataset = { CAB_ref_gt, CAB_ref_lvl_1, LIN_ref_lvl_1, HGE_ref_lvl_1, IBRnet, 12SCENES_apt_1_living_ref_lvl_10, NeRF}

python scripts/eval_metrics.py \
    --images /path/to/the/test_data/dataset/out \
            /path/to/the/test_data/dataset/gt

Citation

If you find our work useful, please consider citing:

@inproceedings{bösiger2024marinerenhancingnovelviews,
      title={MaRINeR: Enhancing Novel Views by Matching Rendered Images with Nearby References}, 
      author={Lukas Bösiger and Mihai Dusmanu and Marc Pollefeys and Zuria Bauer},
      year={2024},
      booktitle={European Conference on Computer Vision (ECCV)},
      url={https://arxiv.org/abs/2407.13745}, 
}

Acknowledgement

We borrow some code from MASA-SR.