forked from guoyang9/BPR-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
128 lines (111 loc) · 3.67 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os
import time
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data
import torch.backends.cudnn as cudnn
# from tensorboardX import SummaryWriter
import model
import config
import evaluate
import data_utils
parser = argparse.ArgumentParser()
parser.add_argument("--lr",
type=float,
default=0.01,
help="learning rate")
parser.add_argument("--lamda",
type=float,
default=0.001,
help="model regularization rate")
parser.add_argument("--batch_size",
type=int,
default=4096,
help="batch size for training")
parser.add_argument("--epochs",
type=int,
default=50,
help="training epoches")
parser.add_argument("--top_k",
type=int,
default=10,
help="compute metrics@top_k")
parser.add_argument("--factor_num",
type=int,
default=32,
help="predictive factors numbers in the model")
parser.add_argument("--num_ng",
type=int,
default=4,
help="sample negative items for training")
parser.add_argument("--test_num_ng",
type=int,
# default=99,
default=50, # the new dataset
help="sample part of negative items for testing")
parser.add_argument("--out",
default=True,
help="save model or not")
parser.add_argument("--gpu",
type=str,
default="0",
help="gpu card ID")
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
cudnn.benchmark = True
############################## PREPARE DATASET ##########################
train_data, test_data, train_mat, user_num, item_num = data_utils.load_all()
# construct the train and test datasets
train_dataset = data_utils.BPRData(
train_data, user_num, item_num, train_mat, num_ng=args.num_ng, is_training=True)
test_dataset = data_utils.BPRData(
test_data, user_num, item_num, num_ng=0, is_training=False)
train_loader = data.DataLoader(train_dataset,
batch_size=args.batch_size, shuffle=True, num_workers=20)
# test_loader = data.DataLoader(test_dataset,
# batch_size=args.test_num_ng+1, shuffle=False, num_workers=0)
test_loader = data.DataLoader(test_dataset,
batch_size=1, shuffle=False)
########################### CREATE MODEL #################################
model = model.BPR(user_num, item_num, args.factor_num)
model.cuda()
# optimizer = optim.SGD(
# model.parameters(), lr=args.lr, weight_decay=args.lamda)
optimizer = optim.Adam(
model.parameters(), lr=args.lr, weight_decay=args.lamda)
# writer = SummaryWriter() # for visualization
########################### TRAINING #####################################
count, best_hr = 0, 0
for epoch in range(args.epochs):
model.train()
start_time = time.time()
train_loader.dataset.ng_sample()
# print("neg sample time cost:", time.time() - start_time)
for user, item_i, item_j in train_loader:
user = user.cuda()
item_i = item_i.cuda()
item_j = item_j.cuda()
model.zero_grad()
prediction_i, prediction_j = model(user, item_i, item_j)
loss = - (prediction_i - prediction_j).sigmoid().log().sum()
loss.backward()
optimizer.step()
# writer.add_scalar('data/loss', loss.item(), count)
count += 1
model.eval()
PREC, RECALL, HR, NDCG = evaluate.metrics(model, test_loader, args.top_k)
elapsed_time = time.time() - start_time
print("The time elapse of epoch {:03d}".format(epoch) + " is: " +
time.strftime("%H: %M: %S", time.gmtime(elapsed_time)))
print("PREC: {:.3f}\tRECALL: {:.3f}, HR: {:.3f}\tNDCG: {:.3f}".format(PREC, RECALL, HR, NDCG))
if HR > best_hr:
best_hr, best_ndcg, best_epoch = HR, NDCG, epoch
if args.out:
if not os.path.exists(config.model_path):
os.mkdir(config.model_path)
torch.save(model, '{}BPR.pt'.format(config.model_path))
print("End. Best epoch {:03d}: HR = {:.3f}, \
NDCG = {:.3f}".format(best_epoch, best_hr, best_ndcg))