-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval_system.py
58 lines (54 loc) · 2.46 KB
/
eval_system.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from ast import parse
import os
import json
import argparse
import pandas as pd
import numpy as np
from pathlib import Path
from fense.evaluator import Evaluator
def get_system_score(evaluator, cands_dir, dataset):
cands_df = pd.read_csv(cands_dir)
if dataset == 'audiocaps':
ref_dir = Path(__file__).parents[0] / 'test_data' / 'audiocaps_test.csv'
ref_df = pd.read_csv(ref_dir)
assert len(cands_df) == (len(ref_df) // 5), "Number of captions should match"
id2order = {}
list_refs = []
for rid, row in ref_df.iterrows():
id0 = row["youtube_id"]
caption = row["caption"]
if id0 in id2order:
list_refs[id2order[id0]].append(caption)
else:
id2order[id0] = len(id2order)
list_refs.append([caption])
cands = ["" for _ in range(len(id2order))]
for rid, row in cands_df.iterrows():
id0 = row["youtube_id"]
caption = row["caption"]
cands[id2order[id0]] = caption
score = evaluator.corpus_score(cands, list_refs)
elif dataset == 'clotho':
ref_dir = Path(__file__).parents[0] / 'test_data' / 'clotho_eval.csv'
ref_df = pd.read_csv(ref_dir)
list_refs = ref_df.iloc[:, 1:].values.tolist()
id2order = {id0: order for order, id0 in enumerate(ref_df["file_name"])}
cands = ["" for _ in range(len(id2order))]
for rid, row in cands_df.iterrows():
id0 = row["file_name"]
caption = row["caption"]
cands[id2order[id0]] = caption
score = evaluator.corpus_score(cands, list_refs)
return score
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--device", default="cuda")
parser.add_argument("--sbert_model", default="paraphrase-TinyBERT-L6-v2")
parser.add_argument("--echecker_model", default="echecker_clotho_audiocaps_base", choices=["echecker_clotho_audiocaps_base", "echecker_clotho_audiocaps_tiny"])
parser.add_argument("--cands_dir", default="./test_data/audiocaps_cands.csv")
parser.add_argument("--dataset", default="audiocaps", choices=["audiocaps", "clotho"])
args = parser.parse_args()
print(args)
evaluator = Evaluator(device=args.device, sbert_model=args.sbert_model, echecker_model=args.echecker_model)
score = get_system_score(evaluator, args.cands_dir, args.dataset)
print(f"Avg FENSE score on {args.dataset}: {score:.5f}")