forked from kerlomz/captcha_trainer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathencoder.py
264 lines (221 loc) · 9.92 KB
/
encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Author: kerlomz <[email protected]>
import io
import re
import cv2
import random
import PIL.Image
import numpy as np
import tensorflow as tf
from exception import *
from constants import RunMode
from config import ModelConfig, LabelFrom, LossFunction
from category import encode_maps, FULL_ANGLE_MAP
from pretreatment import preprocessing
from pretreatment import preprocessing_by_func
from tools.gif_frames import concat_frames, blend_frame
from collections import Counter
class Encoder(object):
"""
编码层:用于将数据输入编码为可输入网络的数据
"""
def __init__(self, model_conf: ModelConfig, mode: RunMode):
self.model_conf = model_conf
self.mode = mode
self.category_param = self.model_conf.category_param
@staticmethod
def main_color_replace(im: np.ndarray, num=2, repl=(255, 255, 255)):
red, green, blue = im.T
colors = []
for (r, g, b) in im[:, 1, :]:
colors.append((r, g, b))
most_common = [i[0] for i in Counter(colors).most_common(num)]
areas = False
for r, g, b in most_common:
areas = areas | ((red == r) & (green == g) & (blue == b))
im[:, :, :][areas.T] = repl
return im
def image(self, path_or_bytes):
"""针对图片类型的输入的编码"""
# im = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
# The OpenCV cannot handle gif format images, it will return None.
# if im is None:
path_or_stream = io.BytesIO(path_or_bytes) if isinstance(path_or_bytes, bytes) else path_or_bytes
if not path_or_stream:
return "Picture is corrupted: {}".format(path_or_bytes)
try:
pil_image = PIL.Image.open(path_or_stream)
except OSError as e:
return "{} - {}".format(e, path_or_bytes)
use_compress = False
gif_handle = self.model_conf.pre_concat_frames != -1 or self.model_conf.pre_blend_frames != -1
if pil_image.mode == 'P' and not gif_handle:
pil_image = pil_image.convert('RGB')
rgb = pil_image.split()
# if self.mode == RunMode.Trains and use_compress:
# img_compress = io.BytesIO()
#
# pil_image.convert('RGB').save(img_compress, format='JPEG', quality=random.randint(75, 100))
# img_compress_bytes = img_compress.getvalue()
# img_compress.close()
# path_or_stream = io.BytesIO(img_compress_bytes)
# pil_image = PIL.Image.open(path_or_stream)
if len(rgb) == 1 and self.model_conf.image_channel == 3:
return "The number of image channels {} is inconsistent with the number of configured channels {}.".format(
len(rgb), self.model_conf.image_channel
)
size = pil_image.size
# if self.mode == RunMode.Trains and len(rgb) == 3 and use_compress:
# new_size = [size[0] + random.randint(5, 10), size[1] + random.randint(5, 10)]
# background = PIL.Image.new(
# 'RGB', new_size, (255, 255, 255)
# )
# random_offset_w = random.randint(0, 5)
# random_offset_h = random.randint(0, 5)
# background.paste(
# pil_image,
# (
# random_offset_w,
# random_offset_h,
# size[0] + random_offset_w,
# size[1] + random_offset_h
# ),
# None
# )
# background.convert('RGB')
# pil_image = background
if len(rgb) > 3 and self.model_conf.pre_replace_transparent and not gif_handle and not use_compress:
background = PIL.Image.new('RGBA', pil_image.size, (255, 255, 255))
try:
background.paste(pil_image, (0, 0, size[0], size[1]), pil_image)
background.convert('RGB')
pil_image = background
except:
pil_image = pil_image.convert('RGB')
if len(pil_image.split()) > 3 and self.model_conf.image_channel == 3:
pil_image = pil_image.convert('RGB')
if self.model_conf.pre_concat_frames != -1:
im = concat_frames(pil_image, need_frame=self.model_conf.pre_concat_frames)
elif self.model_conf.pre_blend_frames != -1:
im = blend_frame(pil_image, need_frame=self.model_conf.pre_blend_frames)
else:
im = np.array(pil_image)
if isinstance(im, list):
return None
im = preprocessing_by_func(
exec_map=self.model_conf.pre_exec_map,
src_arr=im
)
if self.model_conf.image_channel == 1 and len(im.shape) == 3:
if self.mode == RunMode.Trains:
im = cv2.cvtColor(im, cv2.COLOR_RGB2GRAY if bool(random.getrandbits(1)) else cv2.COLOR_BGR2GRAY)
else:
im = cv2.cvtColor(im, cv2.COLOR_RGB2GRAY)
im = preprocessing(
image=im,
binaryzation=self.model_conf.pre_binaryzation,
)
if self.model_conf.pre_horizontal_stitching:
up_slice = im[0: int(size[1] / 2), 0: size[0]]
down_slice = im[int(size[1] / 2): size[1], 0: size[0]]
im = np.concatenate((up_slice, down_slice), axis=1)
if self.mode == RunMode.Trains and bool(random.getrandbits(1)):
im = preprocessing(
image=im,
binaryzation=self.model_conf.da_binaryzation,
median_blur=self.model_conf.da_median_blur,
gaussian_blur=self.model_conf.da_gaussian_blur,
equalize_hist=self.model_conf.da_equalize_hist,
laplacian=self.model_conf.da_laplace,
rotate=self.model_conf.da_rotate,
warp_perspective=self.model_conf.da_warp_perspective,
sp_noise=self.model_conf.da_sp_noise,
random_brightness=self.model_conf.da_brightness,
random_saturation=self.model_conf.da_saturation,
random_hue=self.model_conf.da_hue,
random_gamma=self.model_conf.da_gamma,
random_channel_swap=self.model_conf.da_channel_swap,
random_blank=self.model_conf.da_random_blank,
random_transition=self.model_conf.da_random_transition,
).astype(np.float32)
else:
im = im.astype(np.float32)
if self.model_conf.resize[0] == -1:
# random_ratio = random.choice([2.5, 3, 3.5, 3.2, 2.7, 2.75])
ratio = self.model_conf.resize[1] / size[1]
# random_width = int(random_ratio * RESIZE[1])
resize_width = int(ratio * size[0])
# resize_width = random_width if is_random else resize_width
im = cv2.resize(im, (resize_width, self.model_conf.resize[1]))
else:
im = cv2.resize(im, (self.model_conf.resize[0], self.model_conf.resize[1]))
im = im.swapaxes(0, 1)
if self.model_conf.image_channel == 1:
return np.array((im[:, :, np.newaxis]) / 255.)
else:
return np.array(im[:, :]) / 255.
def text(self, content):
"""针对文本类型的输入的编码"""
if isinstance(content, bytes):
content = content.decode("utf8")
found = content
# 如果匹配内置的大小写规范,触发自动转换
if isinstance(self.category_param, str) and '_LOWER' in self.category_param:
found = found.lower()
if isinstance(self.category_param, str) and '_UPPER' in self.category_param:
found = found.upper()
if self.model_conf.category_param == 'ARITHMETIC':
found = found.replace("x", "×").replace('?', "?")
# 标签是否包含分隔符
if self.model_conf.label_split:
labels = found.split(self.model_conf.label_split)
elif '&' in found:
labels = found.split('&')
elif self.model_conf.max_label_num == 1:
labels = [found]
else:
labels = [_ for _ in found]
labels = self.filter_full_angle(labels)
try:
if not labels:
return [0]
# 根据类别集合找到对应映射编码为dense数组
if self.model_conf.loss_func == LossFunction.CTC:
label = self.split_continuous_char(
[encode_maps(self.model_conf.category)[i] for i in labels]
)
else:
label = self.auto_padding_char(
[encode_maps(self.model_conf.category)[i] for i in labels]
)
return label
except KeyError as e:
return dict(e=e, label=content, char=e.args[0])
# exception(
# 'The sample label {} contains invalid charset: {}.'.format(
# content, e.args[0]
# ), ConfigException.SAMPLE_LABEL_ERROR
# )
def split_continuous_char(self, content):
# 为连续的分类插入空白符
store_list = []
# blank_char = [self.model_conf.category_num] if bool(random.getrandbits(1)) else [0]
blank_char = [self.model_conf.category_num]
for i in range(len(content) - 1):
store_list.append(content[i])
if content[i] == content[i + 1]:
store_list += blank_char
store_list.append(content[-1])
return store_list
def auto_padding_char(self, content):
if len(content) < self.model_conf.max_label_num and self.model_conf.auto_padding:
remain_label_num = self.model_conf.max_label_num - len(content)
return [0] * remain_label_num + content
# return content + [0] * remain_label_num
return content
@staticmethod
def filter_full_angle(content):
return [FULL_ANGLE_MAP.get(i) if i in FULL_ANGLE_MAP.keys() else i for i in content if i != ' ']
if __name__ == '__main__':
pass