forked from blei-lab/treeffuser
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_score_models.py
197 lines (158 loc) · 5.46 KB
/
test_score_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
"""
Contains all of the test for the different score model classes.
"""
import numpy as np
import pytest
from einops import repeat
from treeffuser._score_models import LightGBMScoreModel
from treeffuser._score_models import NeuralScoreModel
from treeffuser.sde.diffusion_sdes import VESDE
from .utils import generate_bimodal_linear_regression_data
from .utils import r2_score
LGBM_PARAMS = {
"n_estimators": 100,
"learning_rate": 0.01,
"n_repeats": 10,
"verbose": 1,
"seed": 0,
}
NEURAL_PARAMS = {
"n_layers": 2,
"hidden_size": 10,
"learning_rate": 0.01,
"n_repeats": 10,
"verbose": 1,
"batch_size": 32,
"max_evals": 10,
"eval_freq": 100,
"ema_decay": 0.0,
"seed": 0,
"eval_percent": 0.1,
"n_jobs": 1,
"early_stopping_rounds": 10,
"use_separate_models": False,
}
@pytest.mark.parametrize(
"score_class, args",
[
(LightGBMScoreModel, LGBM_PARAMS),
(NeuralScoreModel, {**NEURAL_PARAMS, "use_separate_models": False}),
(NeuralScoreModel, {**NEURAL_PARAMS, "use_separate_models": True}),
],
)
def test_linear_regression(score_class, args):
"""
This test checks that the score model can fit a simple linear regression model.
We do this by using the fact that for the VESDE model the score
is -(y_perturbed - y_true)/sigma^2. Hence
Hence
y_true = -score(y_perturbed; x, t) * sigma^2 + y_perturbed
"""
# Params
n = 1000
x_dim = 1
y_dim = 1
sigma = 0.00001
X, y = generate_bimodal_linear_regression_data(n, x_dim, sigma, bimodal=False, seed=0)
assert X.shape == (n, x_dim)
assert y.shape == (n, y_dim)
# Fit a score model
hyperparam_min = 0.01
hyperparam_max = y.std()
sde = VESDE(hyperparam_min=hyperparam_min, hyperparam_max=hyperparam_max)
score_model = score_class(**args)
score_model.fit(X, y, sde)
# Check that the score model is able to fit the data
random_t = np.random.uniform(1e-5, sde.T // 2, size=n)
random_t = repeat(random_t, "n -> n 1")
z = np.random.randn(n)
z = repeat(z, "n -> n y_dim", y_dim=y_dim)
mean, std = sde.get_mean_std_pt_given_y0(y, random_t)
y_perturbed = mean + z * std
scores = score_model.score(y=y_perturbed, X=X, t=random_t)
y_pred = (-1.0) * scores * sigma**2 + y_perturbed
# Check that the R^2 is close to 1
r2 = r2_score(y.flatten(), y_pred.flatten())
print(f"R^2: {r2}, class: {score_class}, args: {args}")
assert r2 > 0.95, f"R^2 is {r2}"
@pytest.mark.parametrize(
"score_class, args",
[
(LightGBMScoreModel, LGBM_PARAMS),
(NeuralScoreModel, {**NEURAL_PARAMS, "use_separate_models": False}),
(NeuralScoreModel, {**NEURAL_PARAMS, "use_separate_models": True}),
],
)
def test_can_be_deterministic(score_class, args):
# Params
n = 200
x_dim = 1
y_dim = 1
sigma = 0.00001
X, y = generate_bimodal_linear_regression_data(n, x_dim, sigma, bimodal=False, seed=0)
assert X.shape == (n, x_dim)
assert y.shape == (n, y_dim)
# Fit a score model
hyperparam_min = 0.01
hyperparam_max = y.std()
sde = VESDE(hyperparam_min=hyperparam_min, hyperparam_max=hyperparam_max)
# First fit
score_model_a = score_class(**args)
score_model_a.fit(X, y, sde)
# Second fit
score_model_b = score_class(**args)
score_model_b.fit(X, y, sde)
# Check that the two results are the same
random_t = np.random.uniform(1e-5, sde.T // 2, size=n)
random_t = repeat(random_t, "n -> n 1")
z = np.random.randn(n)
z = repeat(z, "n -> n y_dim", y_dim=y_dim)
mean, std = sde.get_mean_std_pt_given_y0(y, random_t)
y_perturbed = mean + z * std
scores_a = score_model_a.score(y=y_perturbed, X=X, t=random_t)
scores_b = score_model_b.score(y=y_perturbed, X=X, t=random_t)
msg = "The score model is not deterministic"
assert np.allclose(scores_a, scores_b), msg
@pytest.mark.parametrize(
"score_class, args",
[
(LightGBMScoreModel, LGBM_PARAMS),
(NeuralScoreModel, {**NEURAL_PARAMS, "use_separate_models": False}),
(NeuralScoreModel, {**NEURAL_PARAMS, "use_separate_models": True}),
],
)
def test_different_seeds_do_not_give_same_results(score_class, args):
# Params
n = 200
x_dim = 1
y_dim = 1
sigma = 0.00001
X, y = generate_bimodal_linear_regression_data(n, x_dim, sigma, bimodal=False, seed=0)
assert X.shape == (n, x_dim)
assert y.shape == (n, y_dim)
# Fit a score model
hyperparam_min = 0.01
hyperparam_max = y.std()
sde = VESDE(hyperparam_min=hyperparam_min, hyperparam_max=hyperparam_max)
seed_a = 0
seed_b = 1
# First fit
args["seed"] = seed_a
score_model_a = score_class(**args)
score_model_a.fit(X, y, sde)
# Second fit
args["seed"] = seed_b
score_model_b = score_class(**args)
score_model_b.fit(X, y, sde)
# Check that the two results are the same
random_t = np.random.uniform(1e-5, sde.T // 2, size=n)
random_t = repeat(random_t, "n -> n 1")
z = np.random.randn(n)
z = repeat(z, "n -> n y_dim", y_dim=y_dim)
mean, std = sde.get_mean_std_pt_given_y0(y, random_t)
y_perturbed = mean + z * std
scores_a = score_model_a.score(y=y_perturbed, X=X, t=random_t)
scores_b = score_model_b.score(y=y_perturbed, X=X, t=random_t)
# Check that the score model gives different results
msg = "The score model gives the same results for different seeds"
assert not np.allclose(scores_a, scores_b), msg