forked from blei-lab/treeffuser
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_baselines.py
124 lines (99 loc) · 3.41 KB
/
test_baselines.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import numpy as np
import pytest
from scipy.stats import ks_2samp
from treeffuser.baselines.nnffuser import NNffuser
from .utils import gaussian_mixture_pdf
from .utils import train_test_split
@pytest.mark.parametrize("card_like", [False])
def test_baselines_bimodal_linear_regression(card_like):
"""
We do a very simple sanity check that for a very simple model with not enough data the
samples from the model should be statistically indistinguishable from the data.
"""
n = 1000
n_samples = 1
rng = np.random.default_rng(seed=0)
X_1 = rng.uniform(size=(n, 1))
y_1 = X_1 + rng.normal(size=(n, 1)) * 0.05 * (X_1 + 1) ** 2
X_2 = rng.uniform(size=(n, 1))
y_2 = -X_2 + rng.normal(size=(n, 1)) * 0.05 * (X_2 + 1) ** 2
X = np.concatenate([X_1, X_2], axis=0)
y = np.concatenate([y_1, y_2], axis=0)
# Shuffle and split the data
idx = rng.permutation(2 * n)
X = X[idx]
y = y[idx]
X_train = X[:n]
y_train = y[:n]
X_test = X[-100:]
y_test = y[-100:]
model = NNffuser(
verbose=1,
n_repeats=200,
card_like=card_like,
sde_name="vesde",
batch_size=256,
n_layers=3,
hidden_size=100,
learning_rate=0.005,
ema_decay=0.0,
early_stopping_rounds=100,
eval_freq=100,
max_evals=1000,
seed=0,
)
model.fit(X_train, y_train)
y_samples = model.sample(X_test, n_samples=n_samples, n_parallel=50, n_steps=30, seed=0)
y_samples = y_samples.flatten()
y_test = y_test.flatten()
# Check that the samples are statistically indistinguishable from the data
result = ks_2samp(y_samples, y_test)
assert result.pvalue > 0.05, f"p-value: {result.pvalue}"
def test_sample_based_nll_gaussian_mixture():
"""
The data are generated from a Gaussian mixture model with conditional density:
p(y_i | x_i) = .5 * N(x_i, x_i ** 2) + (1 - .5) * N(-x_i, x_i ** 2)
"""
n = 10**3
rng = np.random.default_rng(seed=0)
x = rng.uniform(low=1, high=2, size=(n, 1))
sign = 2 * rng.binomial(n=1, p=0.5, size=(n, 1)) - 1
y = rng.normal(loc=sign * x, scale=abs(x), size=(n, 1))
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.04, random_state=42)
model = NNffuser(
verbose=1,
n_repeats=100,
max_evals=100000,
eval_freq=100,
hidden_size=100,
n_layers=3,
sde_name="vesde",
learning_rate=0.005,
ema_decay=0.0,
early_stopping_rounds=20,
seed=0,
)
model.fit(x_train, y_train)
nll_treeffuser = model.compute_nll(
x_test, y_test, ode=False, n_samples=10**2, bandwidth=1, seed=0
)
nll_true = -(
gaussian_mixture_pdf(
y_test, x_test, np.abs(x_test), -x_test, np.abs(x_test), 0.5, log=True
)
.sum()
.item()
)
relative_error = np.abs(nll_treeffuser / nll_true - 1)
assert relative_error < 0.05, f"relative error: {relative_error}"
def test_categorical():
"""Basic test for categorical variable support."""
n = 10**3
rng = np.random.default_rng(seed=0)
X_noncat = rng.uniform(low=1, high=2, size=(n, 1))
X_cat = rng.choice(1, size=(n, 1))
X = np.concatenate([X_noncat, X_cat], axis=1)
y = rng.normal(loc=X_noncat + 2 * X_cat, scale=1, size=(n, 1))
for cat_idx in [None, [1]]:
model = NNffuser()
model.fit(X=X, y=y, cat_idx=cat_idx)