-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstochasticvol_helper.py
176 lines (151 loc) · 6.61 KB
/
stochasticvol_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import autograd.numpy as np
import autograd.numpy.random as npr
import autograd.scipy.stats.norm as norm
from autograd import grad
from autograd.extend import notrace_primitive
from scipy.stats import norm as norm_extra
# Sample from discrete distribution
def discretesampling(w, seed):
u = seed.rand()
bins = np.cumsum(w)
return np.digitize(u,bins)
# Resampling
def resampling(w, seed):
# Systematic resampling
N = w.shape[0]
bins = np.cumsum(w)
u = (seed.rand()+np.arange(N))/N
return np.digitize(u, bins)
# Load data
def load_data(number):
fname = 'data/FRB_H10.csv'
observations = np.loadtxt(fname, delimiter=",", usecols=range(5,23), skiprows=6)
observation = np.log(observations[1:,number])-np.log(observations[:-1,number])
print(observations.shape)
return observation
# Log-likelihood N(0, exp(log_beta+log_vol))
def log_likelihood(log_volatility, y_data, mod_params):
mu, logphi, log_sigma, log_beta = mod_params
phi = np.tanh(logphi)
sigma2 = np.exp(log_volatility+log_beta)
return -0.5*y_data**2/sigma2 - 0.5*np.log(2.*np.pi) - 0.5*log_volatility - 0.5*log_beta
# Log-prior N(mu, sigma2/(1-phi2))
def log_prior(log_volatility, mod_params):
mu, logphi, log_sigma, log_beta = mod_params
phi = np.tanh(logphi)
sigma2 = np.exp(log_sigma*2.)/(1.-phi**2)
return -0.5*(log_volatility-mu)**2/sigma2 - 0.5*np.log(2.*np.pi) - 0.5*np.log(sigma2)
# Log-transition N(mu+phi(log_vol-mu), sigma2)
def log_transition(log_volatility, log_volatility_prev, mod_params):
mu, logphi, log_sigma, log_beta = mod_params
phi = np.tanh(logphi)
mean = mu + phi*(log_volatility_prev-mu)
sigma2 = np.exp(log_sigma*2.)
return -0.5*(log_volatility-mean)**2/sigma2 - 0.5*np.log(2.*np.pi) - 0.5*np.log(sigma2)
# eval mod_params
@notrace_primitive
def eval_modparams(mod_params):
mu, logphi, log_sigma, log_beta = mod_params
phi = np.tanh(logphi)
return mu, phi, log_sigma, log_beta
# Log-approx conditionals
def log_variational_approx(var_params, mod_params, t, log_volatility, log_volatility_prev):
mu, phi, log_sigma, log_beta = eval_modparams(mod_params)
infvec, log_precision = var_params
infval = infvec[t]
log_precval = log_precision[t]
var2 = np.exp(-log_precval)
mean2 = var2*infval
if t > 0:
mean1 = mu + phi*(log_volatility_prev-mu)
var1 = np.exp(log_sigma*2.)
else:
mean1 = mu
var1 = np.exp(log_sigma*2.)/(1.-phi**2)
var = 1./(1./var2+1./var1)
mean = var*(mean1/var1 + mean2/var2)
return -0.5*(log_volatility-mean)**2/var - 0.5*np.log(2.*np.pi) - 0.5*np.log(var)
# Simulate variational approx
def sim_variational_approx(t, log_volatility_prev, var_params, mod_params, seed):
mu, phi, log_sigma, log_beta = eval_modparams(mod_params)
infvec, log_precision = var_params
infval = infvec[t]
log_precval = log_precision[t]
var2 = np.exp(-log_precval)
mean2 = var2*infval
if t > 0:
mean1 = mu + phi*(log_volatility_prev-mu)
var1 = np.exp(log_sigma*2.)
else:
mean1 = mu
var1 = np.exp(log_sigma*2.)/(1.-phi**2)
var = 1./(1./var2+1./var1)
mean = var*(mean1/var1 + mean2/var2)
return mean + np.sqrt(var)*seed.normal(size=len(log_volatility_prev))
# Log-approx joint
def log_approx(var_params, log_volatility, mod_params):
T = log_volatility.shape[0]-1
output = log_variational_approx(var_params, mod_params, 0, log_volatility[0], log_volatility[-1])
for t in range(1,T+1):
output = output + log_variational_approx(var_params, mod_params, t, log_volatility[t], log_volatility[t-1])
return output
def log_target(t, log_volatility, log_volatility_prev, y_data, mod_params):
output = np.zeros_like(log_volatility)
if t > 0:
output = output + log_transition(log_volatility, log_volatility_prev, mod_params)
output = output + log_likelihood(log_volatility, y_data[t-1], mod_params)
else:
output = output + log_prior(log_volatility, mod_params)
return output
# Log-target joint
def log_target_complete(log_volatility, y_data, mod_params):
T = log_volatility.shape[0]-1
output = log_prior(log_volatility[0], mod_params)
for t in range(1,T+1):
output = output + log_transition(log_volatility[t], log_volatility[t-1], mod_params)
output = output + log_likelihood(log_volatility[t], y_data[t-1], mod_params)
return output
def log_weights(t, log_volatility, log_volatility_prev, y_data, var_params, mod_params):
return log_target(t, log_volatility, log_volatility_prev, y_data, mod_params) - log_variational_approx(var_params, mod_params, t, log_volatility, log_volatility_prev)
# Log-twisting
def log_twisting(t, log_volatility, var_params):
infvec, log_precision = var_params
infval = infvec[t]
log_precval = log_precision[t]
return -0.5*np.exp(log_precval)*log_volatility**2 + infval*log_volatility
def log_target_twisted(t, log_volatility, log_volatility_prev, y_data, var_params, mod_params):
output = np.zeros_like(log_volatility)
# Twisting potential not used at t=T and only likelihood
T = len(y_data)
if t < T:
output = output + log_twisting(t, log_volatility, var_params)
else:
output = output + log_likelihood(log_volatility, y_data[t-1], mod_params)
# Transition/prior at each step, remove previous twisting
if t > 0:
output = output + log_transition(log_volatility, log_volatility_prev, mod_params)
output = output - log_twisting(t-1, log_volatility_prev, var_params)
else:
output = output + log_prior(log_volatility, mod_params)
# Previous observation
if t > 1:
output = output + log_likelihood(log_volatility_prev, y_data[t-2], mod_params)
return output
def log_weights_twisting(t, log_volatility, log_volatility_prev, y_data, var_params, mod_params):
return log_target_twisted(t, log_volatility, log_volatility_prev, y_data, var_params, mod_params) - log_variational_approx(var_params, mod_params, t, log_volatility, log_volatility_prev)
# BOOTSTRAP
def sim_bootstrap(t, log_volatility_prev, mod_params, seed):
mu, logphi, sigma, log_beta = mod_params
phi = np.tanh(logphi)
if t > 0:
mean = mu + phi*(log_volatility_prev-mu)
sigma2 = sigma**2
else:
mean = mu
sigma2 = sigma**2/(1.-phi**2)
return mean + np.sqrt(sigma2)*seed.normal(size=len(log_volatility_prev))
def log_weights_bootstrap(t, log_volatility, log_volatility_prev, y_data, mod_params):
output = np.zeros_like(log_volatility)
if t > 0:
output = log_likelihood(log_volatility, y_data[t-1], mod_params)
return output