-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.py
155 lines (134 loc) · 5.11 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# coding:utf-8
from multiprocessing.sharedctypes import Value
import os
import argparse
import time
import numpy as np
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
import torch
import torch.nn.functional as F
from torch.autograd import Variable
from torch.utils.data import DataLoader
from model_TII import BiSeNet
from TaskFusion_dataset import Fusion_dataset
from new_fusenet import FusionNet
from tqdm import tqdm
from torch.autograd import Variable
from PIL import Image
def main(modelpath):
fusion_model_path = modelpath
fusionmodel = FusionNet()
fusionmodel.cuda()
fusionmodel.load_state_dict(torch.load(fusion_model_path, map_location='cuda:4'))
print('fusionmodel load done!')
ir_path = '/Test_ir'
vi_path = '/Test_vi_RGB'
test_dataset = Fusion_dataset('val', ir_path=ir_path, vi_path=vi_path)
test_loader = DataLoader(
dataset=test_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers,
pin_memory=True,
drop_last=False,
)
test_loader.n_iter = len(test_loader)
with torch.no_grad():
for it, (images_vis, images_ir,name) in enumerate(test_loader):
images_vis = Variable(images_vis)
images_ir = Variable(images_ir)
image_shape = images_vis.shape
image_h = image_shape[2]
image_w = image_shape[3]
pad_h = 16 - image_h % 16
pad_w = 16 - image_w % 16
images_vis = F.pad(images_vis, (0, pad_w, 0, pad_h), mode='reflect')
images_ir = F.pad(images_ir, (0, pad_w, 0, pad_h), mode='reflect')
images_vis = images_vis.cuda()
images_ir = images_ir.cuda()
images_vis_ycrcb = RGB2YCrCb(images_vis)
logits = fusionmodel(images_vis_ycrcb, images_ir)
fusion_ycrcb = torch.cat(
(logits, images_vis_ycrcb[:, 1:2, :, :], images_vis_ycrcb[:, 2:, :, :]),
dim=1,
)
fusion_image = YCrCb2RGB(fusion_ycrcb)
ones = torch.ones_like(fusion_image)
zeros = torch.zeros_like(fusion_image)
fusion_image = torch.where(fusion_image > ones, ones, fusion_image)
fusion_image = torch.where(fusion_image < zeros, zeros, fusion_image)
fusion_image = fusion_image[:, :, 0:image_h, 0:image_w]
fused_image = fusion_image.cpu().numpy()
fused_image = fused_image.transpose((0, 2, 3, 1))
fused_image = (fused_image - np.min(fused_image)) / (
np.max(fused_image) - np.min(fused_image)
)
fused_image = np.uint8(255.0 * fused_image)
for k in range(len(name)):
image = fused_image[k, :, :, :]
image = Image.fromarray(image)
save_path = os.path.join(fused_dir, name[k])
image.save(save_path)
def YCrCb2RGB(input_im):
im_flat = input_im.transpose(1, 3).transpose(1, 2).reshape(-1, 3)
mat = torch.tensor(
[[1.0, 1.0, 1.0], [1.403, -0.714, 0.0], [0.0, -0.344, 1.773]]
).cuda()
bias = torch.tensor([0.0 / 255, -0.5, -0.5]).cuda()
temp = (im_flat + bias).mm(mat).cuda()
out = (
temp.reshape(
list(input_im.size())[0],
list(input_im.size())[2],
list(input_im.size())[3],
3,
)
.transpose(1, 3)
.transpose(2, 3)
)
return out
def RGB2YCrCb(input_im):
im_flat = input_im.transpose(1, 3).transpose(1, 2).reshape(-1, 3)
R = im_flat[:, 0]
G = im_flat[:, 1]
B = im_flat[:, 2]
Y = 0.299 * R + 0.587 * G + 0.114 * B
Cr = (R - Y) * 0.713 + 0.5
Cb = (B - Y) * 0.564 + 0.5
Y = torch.unsqueeze(Y, 1)
Cr = torch.unsqueeze(Cr, 1)
Cb = torch.unsqueeze(Cb, 1)
temp = torch.cat((Y, Cr, Cb), dim=1).cuda()
out = (
temp.reshape(
list(input_im.size())[0],
list(input_im.size())[2],
list(input_im.size())[3],
3,
)
.transpose(1, 3)
.transpose(2, 3)
)
return out
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Run Fusion with pytorch')
parser.add_argument('--model_name', '-M', type=str, default='Fusion')
parser.add_argument('--batch_size', '-B', type=int, default=1)
parser.add_argument('--gpu', '-G', type=int, default=-1)
parser.add_argument('--num_workers', '-j', type=int, default=8)
parser.add_argument('--fusionmodel', '-F', type=str, default='default')
args = parser.parse_args()
if args.fusionmodel == 'default':
args.fusionmodel = './Fusion/fusion_model.pth'
else :
args.fusionmodel = f'./Fusion/fusion_model_bak_{args.fusionmodel}.pth'
n_class = 9
seg_model_path = './Fusion/model_final.pth'
fusion_model_path = './Fusion/fusionmodel_final.pth'
fused_dir = './Fusion_results'
os.makedirs(fused_dir, mode=0o777, exist_ok=True)
print('| testing %s on GPU #%d with pytorch' % (args.model_name, args.gpu))
start_time = time.time()
main(args.fusionmodel)
end_time = time.time()
print('Fusion time: %f' % (end_time - start_time))