-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtetrahedralize.cc
332 lines (291 loc) · 10.1 KB
/
tetrahedralize.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
/*
* This file is part of the Electron Orbital Explorer. The Electron
* Orbital Explorer is distributed under the Simplified BSD License
* (also called the "BSD 2-Clause License"), in hopes that these
* rendering techniques might be used by other programmers in
* applications such as scientific visualization, video gaming, and so
* on. If you find value in this software and use its technologies for
* another purpose, I would love to hear back from you at bjthinks (at)
* gmail (dot) com. If you improve this software and agree to release
* your modifications under the below license, I encourage you to fork
* the development tree on github and push your modifications. The
* Electron Orbital Explorer's development URL is:
* https://github.com/bjthinks/orbital-explorer
* (This paragraph is not part of the software license and may be
* removed.)
*
* Copyright (c) 2013, Brian W. Johnson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* + Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* + Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <vector>
#include <algorithm>
#include <cmath>
#include <complex>
#include "array.hh"
#include "vector.hh"
#include "function.hh"
#include "delaunay.hh"
#include "tetrahedralize.hh"
using namespace std;
double TetrahedralSubdivision::simplexVolume(unsigned tetra) const
{
const Simplex<3> &simplex = subdivision.getSimplex(tetra);
const Vector<3> &w = subdivision.getPoint(simplex.formingPoint(0));
const Vector<3> &x = subdivision.getPoint(simplex.formingPoint(1));
const Vector<3> &y = subdivision.getPoint(simplex.formingPoint(2));
const Vector<3> &z = subdivision.getPoint(simplex.formingPoint(3));
return fabs(dot_product(x - w, cross_product(y - w, z - w)));
}
static Vector<3> to_color_space(complex<double> x)
{
Vector<3> r;
double n = abs(x);
r[0] = n * x.real();
r[1] = n * x.imag();
r[2] = n;
return r;
}
pair<Vector<3>,double>
TetrahedralSubdivision::find_worst_point(unsigned tetra)
{
const Simplex<3> &simplex = subdivision.getSimplex(tetra);
// Worst point so far, and its absolute error
Vector<3> worst_point;
double worst_point_absolute_error = 0.0;
// Values of the function at the simplex's vertices
vector<Vector<3> > vertex_value(4);
for (unsigned i = 0; i < 4; ++i) {
const Vector<3> &v = subdivision.getPoint(simplex.formingPoint(i));
vertex_value[i] = to_color_space(f(v));
}
// Test points have barycentric coordinates that are multiples of 1/n
const unsigned n = 11;
unsigned bary[4];
Vector<3> p0, p1, test_point(0.0);
for (bary[0] = 0; bary[0] < n; ++bary[0]) {
p0 = (double(bary[0]) / double(n))
* subdivision.getPoint(simplex.formingPoint(0));
for (bary[1] = 0; bary[1] <= n - bary[0]; ++bary[1]) {
if (bary[1] == n)
continue;
p1 = p0 + (double(bary[1]) / double(n))
* subdivision.getPoint(simplex.formingPoint(1));
for (bary[2] = 0; bary[2] <= n - bary[0] - bary[1];
++bary[2]) {
if (bary[2] == n)
continue;
bary[3] = n - bary[0] - bary[1] - bary[2];
if (bary[3] == n)
continue;
// Calculate the location of this test point
test_point = p1;
for (unsigned i = 2; i < 4; ++i) {
double c = double(bary[i]) / double(n);
const Vector<3> &v = subdivision.getPoint(simplex.formingPoint(i));
test_point += c * v;
}
// Is it worse than the worst so far?
Vector<3> actual_value = to_color_space(f(test_point));
Vector<3> interpolated_value;
interpolated_value = 0.0;
for (unsigned i = 0; i < 4; ++i) {
double c = double(bary[i]) / double(n);
interpolated_value += c * vertex_value[i];
}
double test_point_absolute_error =
norm(actual_value - interpolated_value);
if (test_point_absolute_error > worst_point_absolute_error) {
worst_point_absolute_error = test_point_absolute_error;
worst_point = test_point;
}
}
}
}
return make_pair(worst_point, worst_point_absolute_error);
}
bool TetrahedralSubdivision::isBoundary(unsigned tetra)
{
const Simplex<3> &simplex = subdivision.getSimplex(tetra);
unsigned i;
for (i = 0; i < 4; ++i)
if (simplex.formingPoint(i) < 4)
break;
return i < 4;
}
void TetrahedralSubdivision::handleNewTetrahedron(unsigned tetra)
{
// It might have already been subdivided
if (!subdivision.hasSimplex(tetra))
return;
// Ignore tetrahedra that go way out to the giant radius
if (isBoundary(tetra))
return;
// Find the worst point in this tetrahedron
pair<Vector<3>,double> worst = find_worst_point(tetra);
Vector<3> worst_point = worst.first;
double worst_point_absolute_error = worst.second;
double volume = simplexVolume(tetra);
double error = pow(worst_point_absolute_error, 2.0) * volume;
heap_of_tetrahedra.push_back(TetraHeapItem(error, tetra, worst_point));
push_heap(heap_of_tetrahedra.begin(), heap_of_tetrahedra.end());
}
TetrahedralSubdivision::
TetrahedralSubdivision(const Function<3,complex<double> > &f_, double radius) :
f(f_), running(false), finished(false), die(false)
{
// Set up an initial bounding tetrahedron of a large size
Array<4,Vector<3> > bounding_tetrahedron;
double big = 6.0 * radius;
bounding_tetrahedron[0] = Vector3( big, big, big);
bounding_tetrahedron[1] = Vector3( big, -big, -big);
bounding_tetrahedron[2] = Vector3(-big, big, -big);
bounding_tetrahedron[3] = Vector3(-big, -big, big);
// Create a Delaunay triangulation
subdivision = Delaunay<3>(bounding_tetrahedron);
// Add some vertices to bound the radius of significance
Vector<3> point;
for (int i=-1; i<=1; i+=2)
for (int j=-1; j<=1; j+=2)
for (int k=-1; k<=1; k+=2) {
point[0] = i * radius;
point[1] = j * radius;
point[2] = k * radius;
subdivision.inefficientAddPoint(point);
}
// Add tetrahedra to a heap sorted by worst error
for (examined = 1; examined <= subdivision.maxSimplex(); ++examined)
handleNewTetrahedron(examined);
pthread_mutex_init(&mutex, NULL);
}
bool TetrahedralSubdivision::isRunning()
{
pthread_mutex_lock(&mutex);
bool blet = running;
pthread_mutex_unlock(&mutex);
return blet;
}
bool TetrahedralSubdivision::isFinished()
{
pthread_mutex_lock(&mutex);
bool blet = finished;
finished = false;
pthread_mutex_unlock(&mutex);
return blet;
}
void TetrahedralSubdivision::work(unsigned vertices)
{
while (heap_of_tetrahedra.size() > 0 && subdivision.numPoints() < vertices) {
TetraHeapItem next_tetrahedron = heap_of_tetrahedra[0];
pop_heap(heap_of_tetrahedra.begin(), heap_of_tetrahedra.end());
heap_of_tetrahedra.pop_back();
if (!subdivision.hasSimplex(next_tetrahedron.tetra))
continue;
pthread_mutex_lock(&mutex);
if (die) {
running = false;
finished = true;
pthread_mutex_unlock(&mutex);
return;
}
subdivision.addPoint(next_tetrahedron.point,
next_tetrahedron.tetra);
pthread_mutex_unlock(&mutex);
// Add any new tetrahedra to the heap
for (; examined <= subdivision.maxSimplex(); ++examined)
handleNewTetrahedron(examined);
}
pthread_mutex_lock(&mutex);
running = false;
finished = true;
pthread_mutex_unlock(&mutex);
}
static void *start_worker(void *arg)
{
WorkerThreadData *worker_data = reinterpret_cast<WorkerThreadData *>(arg);
worker_data->self->work(worker_data->vertices);
return NULL;
}
void TetrahedralSubdivision::runUntil(unsigned vertices)
{
running = true;
worker_data.self = this;
worker_data.vertices = vertices;
pthread_create(&worker, NULL, start_worker, &worker_data);
}
void TetrahedralSubdivision::kill()
{
pthread_mutex_lock(&mutex);
if (running) {
die = true;
// Spin until the other thread exits
while (running) {
pthread_mutex_unlock(&mutex);
pthread_mutex_lock(&mutex);
}
die = false;
}
pthread_mutex_unlock(&mutex);
}
int TetrahedralSubdivision::numVertices()
{
pthread_mutex_lock(&mutex);
int n = subdivision.numPoints();
pthread_mutex_unlock(&mutex);
return n;
}
vector<Vector<3> > TetrahedralSubdivision::vertexPositions()
{
pthread_mutex_lock(&mutex);
unsigned num_points = subdivision.numPoints();
vector<Vector<3> > vp(num_points);
for (unsigned p = 0; p < num_points; ++p)
vp[p] = subdivision.getPoint(p);
pthread_mutex_unlock(&mutex);
return vp;
}
vector<unsigned> TetrahedralSubdivision::tetrahedronVertexIndices()
{
vector<unsigned> vi;
pthread_mutex_lock(&mutex);
for (unsigned simplex_index = 0;
simplex_index <= subdivision.maxSimplex();
++simplex_index) {
if (!subdivision.hasSimplex(simplex_index))
continue;
const Simplex<3> &simplex = subdivision.getSimplex(simplex_index);
unsigned i;
for (i = 0; i < 4; ++i)
if (simplex.formingPoint(i) < 4)
break;
if (i != 4) continue;
for (i = 0; i < 4; ++i)
vi.push_back(simplex.formingPoint(i));
}
pthread_mutex_unlock(&mutex);
return vi;
}