-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path12_Build_Embeddings.py
executable file
·41 lines (34 loc) · 1.62 KB
/
12_Build_Embeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#!/usr/bin/python3
import os
import logging
from amr_coref.coref.build_embeddings import build_embeddings
from amr_coref.utils.logging import setup_logging, silence_penman
from amr_coref.coref.word_vectors import load_embeddings, save_embeddings
from amr_coref.utils.data_utils import load_json
# Note: right now this builds the vocabulary / embeddings on the training and test data
# but for more general use, this should probably use the entire amr corpus
if __name__ == '__main__':
setup_logging(logfname='logs/build_embeddings.log', level=logging.WARN)
silence_penman()
coref_fpath_train = 'data/tdata/train.json.gz'
coref_fpath_test = 'data/tdata/test.json.gz'
embed_in_fpath = 'data/GloVe/glove.6B.50d.txt'
embed_out_fpath = 'data/tdata/embeddings.txt'
os.makedirs(os.path.dirname(embed_out_fpath), exist_ok=True)
# Load all the graph data from the coref files
gdata_dict = {}
for coref_fpath in [coref_fpath_test, coref_fpath_train]:
print('Loading mention data from', coref_fpath)
data = load_json(coref_fpath)
for sent_id, gdata in data['gdata'].items():
assert sent_id not in gdata_dict
gdata_dict[sent_id] = gdata
# Load the raw word vectors
print('Loading embeddings from', embed_in_fpath)
embed_in_dict, _ = load_embeddings(embed_in_fpath)
print()
# Using the pretrained embeddings new set off of the vocabular from the graphs
embed_out_dict = build_embeddings(embed_in_dict, gdata_dict)
# Save the data
print('Saving embeddings to', embed_out_fpath)
save_embeddings(embed_out_dict, embed_out_fpath)