diff --git a/README.mediawiki b/README.mediawiki index 6c48d0e237..ed40f4a0f8 100644 --- a/README.mediawiki +++ b/README.mediawiki @@ -1177,6 +1177,13 @@ Those proposing changes should consider that ultimately consent may rest with th | Standard | Draft |- +| [[bip-0374.mediawiki|374]] +| Applications +| Discrete Log Equality Proofs +| Andrew Toth, Ruben Somsen, Sebastian Falbesoner +| Standard +| Draft +|- | [[bip-0379.md|379]] | Applications | Miniscript diff --git a/bip-0374.mediawiki b/bip-0374.mediawiki new file mode 100644 index 0000000000..d04f3fc1bc --- /dev/null +++ b/bip-0374.mediawiki @@ -0,0 +1,128 @@ +
+  BIP: 374
+  Layer: Applications
+  Title: Discrete Log Equality Proofs
+  Author: Andrew Toth 
+          Ruben Somsen 
+          Sebastian Falbesoner 
+  Comments-URI: https://github.com/bitcoin/bips/wiki/Comments:BIP-0374
+  Status: Draft
+  Type: Standards Track
+  License: BSD-2-Clause
+  Created: 2024-12-26
+  Post-History: https://gist.github.com/andrewtoth/df97c3260cc8d12f09d3855ee61322ea
+                https://groups.google.com/g/bitcoindev/c/MezoKV5md7s
+
+ +== Introduction == + +=== Abstract === + +This document proposes a standard for 64-byte zero-knowledge ''discrete logarithm equality proofs'' (DLEQ proofs) over an elliptic curve. For given elliptic curve points ''A'', ''B'', ''C'', ''G'', and a scalar ''a'' known on ly to the prover where ''A = a⋅G'' and ''C = a⋅B'', the prover proves knowledge of ''a'' without revealing anything about ''a''. This can, for instance, be useful in ECDH: if ''A'' and ''B'' are ECDH public keys, and ''C'' is their ECDH shared secret computed as ''C = a⋅B'', the proof establishes that the same secret key ''a'' is used for generating both ''A'' and ''C'' without revealing ''a''. + +=== Copyright === + +This document is licensed under the 2-clause BSD license. + +=== Motivation === + +[https://github.com/bitcoin/bips/blob/master/bip-0352.mediawiki#specification BIP352] requires senders to compute output scripts using ECDH shared secrets from the same secret keys used to sign the inputs. Generating an incorrect signature will produce an invalid transaction that will be rejected by consensus. An incorrectly generated output script can still be consensus-valid, meaning funds may be lost if it gets broadcast. +By producing a DLEQ proof for the generated ECDH shared secrets, the signing entity can prove to other entities that the output scripts have been generated correctly without revealing the private keys. + +== Specification == + +All conventions and notations are used as defined in [https://github.com/bitcoin/bips/blob/master/bip-0327.mediawiki#user-content-Notation BIP327]. + +=== Description === + +The basic proof generation uses a random scalar ''k'', the secret ''a'', and the point being proven ''C = a⋅B''. + +* Let ''R1 = k⋅G''. +* Let ''R2 = k⋅B''. +* Let ''e = hash(R1 || R2)''. +* Let ''s = (k + e⋅a)''. + +Providing only ''C'', ''e'' and ''s'' as a proof does not reveal ''a'' or ''k''. + +Verifying the proof involves recreating ''R1'' and ''R2'' with only ''e'' and ''s'' as follows: + +* Let ''R1 = s⋅G - e⋅A''. +* Let ''R2 = s⋅B - e⋅C''. + +This can be verified by substituting ''s = (k + e⋅a)'': + +* ''s⋅G - e⋅A = (k + e⋅a)⋅G - e⋅A = k⋅G + e⋅(a⋅G) - e⋅A = k⋅G + e⋅A - e⋅A = k⋅G''. +* ''s⋅B - e⋅C = (k + e⋅a)⋅B - e⋅C = k⋅B + e⋅(a⋅B) - e⋅C = k⋅B + e⋅C - e⋅C = k⋅B''. + +Thus verifying ''e = hash(R1 || R2)'' proves the discrete logarithm equivalency of ''A'' and ''C''. + +=== DLEQ Proof Generation === + +The following generates a proof that the result of ''a⋅B'' and the result of ''a⋅G'' are both generated from the same scalar ''a'' without having to reveal ''a''. + +Input: +* The secret key ''a'': a 256-bit unsigned integer +* The public key ''B'': a point on the curve +* Auxiliary random data ''r'': a 32-byte array ''' Why include auxiliary random data?''' The auxiliary random data should be set to fresh randomness for each proof. The same rationale and recommendations from [https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki#default-signing BIP340] should be applied. +* The generator point ''G'': a point on the curve ''' Why include the generator point G as an input?''' While all other BIPs have used the generator point from secp256k1, passing it as an input here lets this algorithm be used for other curves. +* An optional message ''m'': a 32-byte array ''' Why include a message as an input?''' This could be useful for protocols that want to authorize on a compound statement, not just knowledge of a scalar. This allows the protocol to combine knowledge of the scalar and the statement. + +The algorithm ''GenerateProof(a, B, r, G, m)'' is defined as: +* Fail if ''a = 0'' or ''a ≥ n''. +* Fail if ''is_infinite(B)''. +* Let ''A = a⋅G''. +* Let ''C = a⋅B''. +* Let ''t'' be the byte-wise xor of ''bytes(32, a)'' and ''hashBIP0374/aux(r)''. +* Let ''rand = hashBIP0374/nonce(t || cbytes(A) || cbytes(C))''. +* Let ''k = int(rand) mod n''. +* Fail if ''k = 0''. +* Let ''R1 = k⋅G''. +* Let ''R2 = k⋅B''. +* Let ''m' = m if m is provided, otherwise an empty byte array''. +* Let ''e = int(hashBIP0374/challenge(cbytes(A) || cbytes(B) || cbytes(C) || cbytes(G) || cbytes(R1) || cbytes(R2) || m'))''. +* Let ''s = (k + e⋅a) mod n''. +* Let ''proof = bytes(32, e) || bytes(32, s)''. +* If ''VerifyProof(A, B, C, proof)'' (see below) returns failure, abort. +* Return the proof ''proof''. + +=== DLEQ Proof Verification === + +The following verifies the proof generated in the previous section. If the following algorithm succeeds, the points ''A'' and ''C'' were both generated from the same scalar. The former from multiplying by ''G'', and the latter from multiplying by ''B''. + +Input: +* The public key of the secret key used in the proof generation ''A'': a point on the curve +* The public key used in the proof generation ''B'': a point on the curve +* The result of multiplying the secret and public keys used in the proof generation ''C'': a point on the curve +* A proof ''proof'': a 64-byte array +* The generator point used in the proof generation ''G'': a point on the curve ''' Why include the generator point G as an input?''' While all other BIPs have used the generator point from Secp256k1, passing it as an input here lets this algorithm be used for other curves. +* An optional message ''m'': a 32-byte array ''' Why include a message as an input?''' This could be useful for protocols that want to authorize on a compound statement, not just knowledge of a scalar. This allows the protocol to combine knowledge of the scalar and the statement. + +The algorithm ''VerifyProof(A, B, C, proof, G, m)'' is defined as: +* Fail if any of ''is_infinite(A)'', ''is_infinite(B)'', ''is_infinite(C)'', ''is_infinite(G)'' +* Let ''e = int(proof[0:32])''. +* Let ''s = int(proof[32:64])''; fail if ''s ≥ n''. +* Let ''R1 = s⋅G - e⋅A''. +* Fail if ''is_infinite(R1)''. +* Let ''R2 = s⋅B - e⋅C''. +* Fail if ''is_infinite(R2)''. +* Let ''m' = m if m is provided, otherwise an empty byte array''. +* Fail if ''e ≠ int(hashBIP0374/challenge(cbytes(A) || cbytes(B) || cbytes(C) || cbytes(G) || cbytes(R1) || cbytes(R2) || m'))''. +* Return success iff no failure occurred before reaching this point. + +==Backwards Compatibility== + +This proposal is compatible with all older clients. + +== Test Vectors and Reference Code == + +A reference python implementation is included [./bip-0374/reference.py here]. +Test vectors can be generated by running `./bip-0374/gen_test_vectors.py` which will produce a CSV file of random test vectors for both generating and verifying proofs. These can be run against the reference implementation with `./bip-0374/run_test_vectors.py`. + +== Footnotes == + + + +== Acknowledgements == + +Thanks to josibake, Tim Ruffing, benma, stratospher, waxwing, Yuval Kogman and all others who +participated in discussions on this topic. diff --git a/bip-0374/gen_test_vectors.py b/bip-0374/gen_test_vectors.py new file mode 100755 index 0000000000..aaa090a453 --- /dev/null +++ b/bip-0374/gen_test_vectors.py @@ -0,0 +1,126 @@ +#!/usr/bin/env python3 +"""Generate the BIP-DLEQ test vectors (limited to secp256k1 generator right now).""" +import csv +import os +import sys +from reference import ( + TaggedHash, + dleq_generate_proof, + dleq_verify_proof, +) +from secp256k1 import G as GENERATOR, GE + + +NUM_SUCCESS_TEST_VECTORS = 5 +DLEQ_TAG_TESTVECTORS_RNG = "BIP0374/testvectors_rng" + +FILENAME_GENERATE_PROOF_TEST = os.path.join(sys.path[0], 'test_vectors_generate_proof.csv') +FILENAME_VERIFY_PROOF_TEST = os.path.join(sys.path[0], 'test_vectors_verify_proof.csv') + + +def random_scalar_int(vector_i, purpose): + rng_out = TaggedHash(DLEQ_TAG_TESTVECTORS_RNG, purpose.encode() + vector_i.to_bytes(4, 'little')) + return int.from_bytes(rng_out, 'big') % GE.ORDER + + +def random_bytes(vector_i, purpose): + rng_out = TaggedHash(DLEQ_TAG_TESTVECTORS_RNG, purpose.encode() + vector_i.to_bytes(4, 'little')) + return rng_out + + +def create_test_vector_data(vector_i): + g = random_scalar_int(vector_i, "scalar_g") + assert g < GE.ORDER + assert g > 0 + G = g * GENERATOR + assert not G.infinity + a = random_scalar_int(vector_i, "scalar_a") + A = a * G + b = random_scalar_int(vector_i, "scalar_b") + B = b * G + C = a * B # shared secret + assert C.to_bytes_compressed() == (b * A).to_bytes_compressed() + auxrand = random_bytes(vector_i, "auxrand") + msg = random_bytes(vector_i, "message") + proof = dleq_generate_proof(a, B, auxrand, G=G, m=msg) + return (G, a, A, b, B, C, auxrand, msg, proof) + +TEST_VECTOR_DATA = [create_test_vector_data(i) for i in range(NUM_SUCCESS_TEST_VECTORS)] + + +def gen_all_generate_proof_vectors(f): + writer = csv.writer(f) + writer.writerow(("index", "point_G", "scalar_a", "point_B", "auxrand_r", "message", "result_proof", "comment")) + + # success cases with random values + idx = 0 + for i in range(NUM_SUCCESS_TEST_VECTORS): + G, a, A, b, B, C, auxrand, msg, proof = TEST_VECTOR_DATA[i] + assert proof is not None and len(proof) == 64 + writer.writerow((idx, G.to_bytes_compressed().hex(), f"{a:064x}", B.to_bytes_compressed().hex(), auxrand.hex(), msg.hex(), proof.hex(), f"Success case {i+1}")) + idx += 1 + + # failure cases: a is not within group order (a=0, a=N) + a_invalid = 0 + assert dleq_generate_proof(a_invalid, B, auxrand, G=G, m=msg) is None + writer.writerow((idx, G.to_bytes_compressed().hex(), f"{a_invalid:064x}", B.to_bytes_compressed().hex(), auxrand.hex(), msg.hex(), "INVALID", f"Failure case (a=0)")) + idx += 1 + a_invalid = GE.ORDER + assert dleq_generate_proof(a_invalid, B, auxrand, G=G, m=msg) is None + writer.writerow((idx, G.to_bytes_compressed().hex(), f"{a_invalid:064x}", B.to_bytes_compressed().hex(), auxrand.hex(), msg.hex(), "INVALID", f"Failure case (a=N [group order])")) + idx += 1 + + # failure case: B is point at infinity + B_infinity = GE() + B_infinity_str = "INFINITY" + assert dleq_generate_proof(a, B_infinity, auxrand, m=msg) is None + writer.writerow((idx, G.to_bytes_compressed().hex(), f"{a:064x}", B_infinity_str, auxrand.hex(), msg.hex(), "INVALID", f"Failure case (B is point at infinity)")) + idx += 1 + + +def gen_all_verify_proof_vectors(f): + writer = csv.writer(f) + writer.writerow(("index", "point_G", "point_A", "point_B", "point_C", "proof", "message", "result_success", "comment")) + + # success cases (same as above) + idx = 0 + for i in range(NUM_SUCCESS_TEST_VECTORS): + G, _, A, _, B, C, _, msg, proof = TEST_VECTOR_DATA[i] + assert dleq_verify_proof(A, B, C, proof, G=G, m=msg) + writer.writerow((idx, G.to_bytes_compressed().hex(), A.to_bytes_compressed().hex(), B.to_bytes_compressed().hex(), + C.to_bytes_compressed().hex(), proof.hex(), msg.hex(), "TRUE", f"Success case {i+1}")) + idx += 1 + + # other permutations of A, B, C should always fail + for i, points in enumerate(([A, C, B], [B, A, C], [B, C, A], [C, A, B], [C, B, A])): + assert not dleq_verify_proof(points[0], points[1], points[2], proof, m=msg) + writer.writerow((idx, G.to_bytes_compressed().hex(), points[0].to_bytes_compressed().hex(), points[1].to_bytes_compressed().hex(), + points[2].to_bytes_compressed().hex(), proof.hex(), msg.hex(), "FALSE", f"Swapped points case {i+1}")) + idx += 1 + + # modifying proof should fail (flip one bit) + proof_damage_pos = random_scalar_int(idx, "damage_pos") % 256 + proof_damaged = list(proof) + proof_damaged[proof_damage_pos // 8] ^= (1 << (proof_damage_pos % 8)) + proof_damaged = bytes(proof_damaged) + writer.writerow((idx, G.to_bytes_compressed().hex(), A.to_bytes_compressed().hex(), B.to_bytes_compressed().hex(), + C.to_bytes_compressed().hex(), proof_damaged.hex(), msg.hex(), "FALSE", f"Tampered proof (random bit-flip)")) + idx += 1 + + # modifying message should fail (flip one bit) + msg_damage_pos = random_scalar_int(idx, "damage_pos") % 256 + msg_damaged = list(msg) + msg_damaged[proof_damage_pos // 8] ^= (1 << (msg_damage_pos % 8)) + msg_damaged = bytes(msg_damaged) + writer.writerow((idx, G.to_bytes_compressed().hex(), A.to_bytes_compressed().hex(), B.to_bytes_compressed().hex(), + C.to_bytes_compressed().hex(), proof.hex(), msg_damaged.hex(), "FALSE", f"Tampered message (random bit-flip)")) + idx += 1 + + +if __name__ == "__main__": + print(f"Generating {FILENAME_GENERATE_PROOF_TEST}...") + with open(FILENAME_GENERATE_PROOF_TEST, "w", encoding="utf-8") as fil_generate_proof: + gen_all_generate_proof_vectors(fil_generate_proof) + print(f"Generating {FILENAME_VERIFY_PROOF_TEST}...") + with open(FILENAME_VERIFY_PROOF_TEST, "w", encoding="utf-8") as fil_verify_proof: + gen_all_verify_proof_vectors(fil_verify_proof) diff --git a/bip-0374/reference.py b/bip-0374/reference.py new file mode 100644 index 0000000000..edb7efda4f --- /dev/null +++ b/bip-0374/reference.py @@ -0,0 +1,144 @@ +"""Reference implementation of DLEQ BIP for secp256k1 with unit tests.""" + +from hashlib import sha256 +import random +from secp256k1 import G, GE +import sys +import unittest + + +DLEQ_TAG_AUX = "BIP0374/aux" +DLEQ_TAG_NONCE = "BIP0374/nonce" +DLEQ_TAG_CHALLENGE = "BIP0374/challenge" + + +def TaggedHash(tag: str, data: bytes) -> bytes: + ss = sha256(tag.encode()).digest() + ss += ss + ss += data + return sha256(ss).digest() + + +def xor_bytes(lhs: bytes, rhs: bytes) -> bytes: + assert len(lhs) == len(rhs) + return bytes([lhs[i] ^ rhs[i] for i in range(len(lhs))]) + + +def dleq_challenge( + A: GE, B: GE, C: GE, R1: GE, R2: GE, m: bytes | None, G: GE = G, +) -> int: + if m is not None: + assert len(m) == 32 + m = bytes([]) if m is None else m + return int.from_bytes( + TaggedHash( + DLEQ_TAG_CHALLENGE, + A.to_bytes_compressed() + + B.to_bytes_compressed() + + C.to_bytes_compressed() + + G.to_bytes_compressed() + + R1.to_bytes_compressed() + + R2.to_bytes_compressed() + + m, + ), + "big", + ) + + +def dleq_generate_proof( + a: int, B: GE, r: bytes, G: GE = G, m: bytes | None = None +) -> bytes | None: + assert len(r) == 32 + if not (0 < a < GE.ORDER): + return None + if B.infinity: + return None + A = a * G + C = a * B + t = xor_bytes(a.to_bytes(32, "big"), TaggedHash(DLEQ_TAG_AUX, r)) + rand = TaggedHash( + DLEQ_TAG_NONCE, t + A.to_bytes_compressed() + C.to_bytes_compressed() + ) + k = int.from_bytes(rand, "big") % GE.ORDER + if k == 0: + return None + R1 = k * G + R2 = k * B + e = dleq_challenge(A, B, C, R1, R2, m) + s = (k + e * a) % GE.ORDER + proof = e.to_bytes(32, "big") + s.to_bytes(32, "big") + if not dleq_verify_proof(A, B, C, proof, G=G, m=m): + return None + return proof + + +def dleq_verify_proof( + A: GE, B: GE, C: GE, proof: bytes, G: GE = G, m: bytes | None = None +) -> bool: + if A.infinity or B.infinity or C.infinity or G.infinity: + return False + assert len(proof) == 64 + e = int.from_bytes(proof[:32], "big") + s = int.from_bytes(proof[32:], "big") + if s >= GE.ORDER: + return False + # TODO: implement subtraction operator (__sub__) for GE class to simplify these terms + R1 = s * G + (-e * A) + if R1.infinity: + return False + R2 = s * B + (-e * C) + if R2.infinity: + return False + if e != dleq_challenge(A, B, C, R1, R2, m): + return False + return True + + +class DLEQTests(unittest.TestCase): + def test_dleq(self): + seed = random.randrange(sys.maxsize) + random.seed(seed) + print(f"PRNG seed is: {seed}") + for _ in range(10): + # generate random keypairs for both parties + a = random.randrange(1, GE.ORDER) + A = a * G + b = random.randrange(1, GE.ORDER) + B = b * G + + # create shared secret + C = a * B + + # create dleq proof + rand_aux = random.randbytes(32) + proof = dleq_generate_proof(a, B, rand_aux) + self.assertTrue(proof is not None) + # verify dleq proof + success = dleq_verify_proof(A, B, C, proof) + self.assertTrue(success) + + # flip a random bit in the dleq proof and check that verification fails + for _ in range(5): + proof_damaged = list(proof) + proof_damaged[random.randrange(len(proof))] ^= 1 << ( + random.randrange(8) + ) + success = dleq_verify_proof(A, B, C, bytes(proof_damaged)) + self.assertFalse(success) + + # create the same dleq proof with a message + message = random.randbytes(32) + proof = dleq_generate_proof(a, B, rand_aux, m=message) + self.assertTrue(proof is not None) + # verify dleq proof with a message + success = dleq_verify_proof(A, B, C, proof, m=message) + self.assertTrue(success) + + # flip a random bit in the dleq proof and check that verification fails + for _ in range(5): + proof_damaged = list(proof) + proof_damaged[random.randrange(len(proof))] ^= 1 << ( + random.randrange(8) + ) + success = dleq_verify_proof(A, B, C, bytes(proof_damaged)) + self.assertFalse(success) diff --git a/bip-0374/run_test_vectors.py b/bip-0374/run_test_vectors.py new file mode 100755 index 0000000000..44b4f196db --- /dev/null +++ b/bip-0374/run_test_vectors.py @@ -0,0 +1,77 @@ +#!/usr/bin/env python3 +"""Run the BIP-DLEQ test vectors.""" +import csv +import os +import sys +from reference import ( + dleq_generate_proof, + dleq_verify_proof, +) +from secp256k1 import GE + + +FILENAME_GENERATE_PROOF_TEST = os.path.join(sys.path[0], 'test_vectors_generate_proof.csv') +FILENAME_VERIFY_PROOF_TEST = os.path.join(sys.path[0], 'test_vectors_verify_proof.csv') + + +all_passed = True +print("-----------------------------------------") +print("----- Proof generation test vectors -----") +print("-----------------------------------------") +with open(FILENAME_GENERATE_PROOF_TEST, newline='') as csvfile: + reader = csv.reader(csvfile) + reader.__next__() + for row in reader: + (index, point_G_hex, seckey_a_hex, point_B_hex, aux_rand_hex, msg_hex, result_str, comment) = row + print(seckey_a_hex) + G = GE() if point_G_hex == 'INFINITY' else GE.from_bytes(bytes.fromhex(point_G_hex)) + a = int.from_bytes(bytes.fromhex(seckey_a_hex), 'big') + B = GE() if point_B_hex == 'INFINITY' else GE.from_bytes(bytes.fromhex(point_B_hex)) + aux_rand = bytes.fromhex(aux_rand_hex) + msg = bytes.fromhex(msg_hex) + print('Test vector', ('#' + index).rjust(3, ' ') + ':' + f' ({comment})') + expected_result = None if result_str == 'INVALID' else bytes.fromhex(result_str) + actual_result = dleq_generate_proof(a, B, aux_rand, G=G, m=msg) + if expected_result == actual_result: + print(' * Passed proof generation test.') + else: + print(' * Failed proof generation test.') + print(' Expected proof: ', expected_result.hex() if expected_result is not None else 'INVALID') + print(' Actual proof: ', actual_result.hex() if actual_result is not None else 'INVALID') + all_passed = False + print() + + +print("-------------------------------------------") +print("----- Proof verification test vectors -----") +print("-------------------------------------------") +with open(FILENAME_VERIFY_PROOF_TEST, newline='') as csvfile: + reader = csv.reader(csvfile) + reader.__next__() + for row in reader: + (index, point_G_hex, point_A_hex, point_B_hex, point_C_hex, proof_hex, msg_hex, result_success, comment) = row + G = GE() if point_G_hex == 'INFINITY' else GE.from_bytes(bytes.fromhex(point_G_hex)) + A = GE() if point_A_hex == 'INFINITY' else GE.from_bytes(bytes.fromhex(point_A_hex)) + B = GE() if point_B_hex == 'INFINITY' else GE.from_bytes(bytes.fromhex(point_B_hex)) + C = GE() if point_C_hex == 'INFINITY' else GE.from_bytes(bytes.fromhex(point_C_hex)) + proof = bytes.fromhex(proof_hex) + msg = bytes.fromhex(msg_hex) + print('Test vector', ('#' + index).rjust(3, ' ') + ':' + f' ({comment})') + expected_result = result_success == 'TRUE' + actual_result = dleq_verify_proof(A, B, C, proof, G=G, m=msg) + if expected_result == actual_result: + print(' * Passed proof verification test.') + else: + print(' * Failed proof verification test.') + print(' Expected verification result: ', expected_result) + print(' Actual verification result: ', actual_result) + all_passed = False + + +print() +if all_passed: + print('All test vectors passed.') + sys.exit(0) +else: + print('Some test vectors failed.') + sys.exit(1) diff --git a/bip-0374/secp256k1.py b/bip-0374/secp256k1.py new file mode 100644 index 0000000000..50a46dce37 --- /dev/null +++ b/bip-0374/secp256k1.py @@ -0,0 +1,354 @@ +# Copyright (c) 2022-2023 The Bitcoin Core developers +# Distributed under the MIT software license, see the accompanying +# file COPYING or http://www.opensource.org/licenses/mit-license.php. + +"""Test-only implementation of low-level secp256k1 field and group arithmetic + +It is designed for ease of understanding, not performance. + +WARNING: This code is slow and trivially vulnerable to side channel attacks. Do not use for +anything but tests. + +Exports: +* FE: class for secp256k1 field elements +* GE: class for secp256k1 group elements +* G: the secp256k1 generator point +""" + +import unittest +from hashlib import sha256 + +class FE: + """Objects of this class represent elements of the field GF(2**256 - 2**32 - 977). + + They are represented internally in numerator / denominator form, in order to delay inversions. + """ + + # The size of the field (also its modulus and characteristic). + SIZE = 2**256 - 2**32 - 977 + + def __init__(self, a=0, b=1): + """Initialize a field element a/b; both a and b can be ints or field elements.""" + if isinstance(a, FE): + num = a._num + den = a._den + else: + num = a % FE.SIZE + den = 1 + if isinstance(b, FE): + den = (den * b._num) % FE.SIZE + num = (num * b._den) % FE.SIZE + else: + den = (den * b) % FE.SIZE + assert den != 0 + if num == 0: + den = 1 + self._num = num + self._den = den + + def __add__(self, a): + """Compute the sum of two field elements (second may be int).""" + if isinstance(a, FE): + return FE(self._num * a._den + self._den * a._num, self._den * a._den) + return FE(self._num + self._den * a, self._den) + + def __radd__(self, a): + """Compute the sum of an integer and a field element.""" + return FE(a) + self + + def __sub__(self, a): + """Compute the difference of two field elements (second may be int).""" + if isinstance(a, FE): + return FE(self._num * a._den - self._den * a._num, self._den * a._den) + return FE(self._num - self._den * a, self._den) + + def __rsub__(self, a): + """Compute the difference of an integer and a field element.""" + return FE(a) - self + + def __mul__(self, a): + """Compute the product of two field elements (second may be int).""" + if isinstance(a, FE): + return FE(self._num * a._num, self._den * a._den) + return FE(self._num * a, self._den) + + def __rmul__(self, a): + """Compute the product of an integer with a field element.""" + return FE(a) * self + + def __truediv__(self, a): + """Compute the ratio of two field elements (second may be int).""" + return FE(self, a) + + def __pow__(self, a): + """Raise a field element to an integer power.""" + return FE(pow(self._num, a, FE.SIZE), pow(self._den, a, FE.SIZE)) + + def __neg__(self): + """Negate a field element.""" + return FE(-self._num, self._den) + + def __int__(self): + """Convert a field element to an integer in range 0..p-1. The result is cached.""" + if self._den != 1: + self._num = (self._num * pow(self._den, -1, FE.SIZE)) % FE.SIZE + self._den = 1 + return self._num + + def sqrt(self): + """Compute the square root of a field element if it exists (None otherwise). + + Due to the fact that our modulus is of the form (p % 4) == 3, the Tonelli-Shanks + algorithm (https://en.wikipedia.org/wiki/Tonelli-Shanks_algorithm) is simply + raising the argument to the power (p + 1) / 4. + + To see why: (p-1) % 2 = 0, so 2 divides the order of the multiplicative group, + and thus only half of the non-zero field elements are squares. An element a is + a (nonzero) square when Euler's criterion, a^((p-1)/2) = 1 (mod p), holds. We're + looking for x such that x^2 = a (mod p). Given a^((p-1)/2) = 1, that is equivalent + to x^2 = a^(1 + (p-1)/2) mod p. As (1 + (p-1)/2) is even, this is equivalent to + x = a^((1 + (p-1)/2)/2) mod p, or x = a^((p+1)/4) mod p.""" + v = int(self) + s = pow(v, (FE.SIZE + 1) // 4, FE.SIZE) + if s**2 % FE.SIZE == v: + return FE(s) + return None + + def is_square(self): + """Determine if this field element has a square root.""" + # A more efficient algorithm is possible here (Jacobi symbol). + return self.sqrt() is not None + + def is_even(self): + """Determine whether this field element, represented as integer in 0..p-1, is even.""" + return int(self) & 1 == 0 + + def __eq__(self, a): + """Check whether two field elements are equal (second may be an int).""" + if isinstance(a, FE): + return (self._num * a._den - self._den * a._num) % FE.SIZE == 0 + return (self._num - self._den * a) % FE.SIZE == 0 + + def to_bytes(self): + """Convert a field element to a 32-byte array (BE byte order).""" + return int(self).to_bytes(32, 'big') + + @staticmethod + def from_bytes(b): + """Convert a 32-byte array to a field element (BE byte order, no overflow allowed).""" + v = int.from_bytes(b, 'big') + if v >= FE.SIZE: + return None + return FE(v) + + def __str__(self): + """Convert this field element to a 64 character hex string.""" + return f"{int(self):064x}" + + def __repr__(self): + """Get a string representation of this field element.""" + return f"FE(0x{int(self):x})" + + +class GE: + """Objects of this class represent secp256k1 group elements (curve points or infinity) + + Normal points on the curve have fields: + * x: the x coordinate (a field element) + * y: the y coordinate (a field element, satisfying y^2 = x^3 + 7) + * infinity: False + + The point at infinity has field: + * infinity: True + """ + + # Order of the group (number of points on the curve, plus 1 for infinity) + ORDER = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 + + # Number of valid distinct x coordinates on the curve. + ORDER_HALF = ORDER // 2 + + def __init__(self, x=None, y=None): + """Initialize a group element with specified x and y coordinates, or infinity.""" + if x is None: + # Initialize as infinity. + assert y is None + self.infinity = True + else: + # Initialize as point on the curve (and check that it is). + fx = FE(x) + fy = FE(y) + assert fy**2 == fx**3 + 7 + self.infinity = False + self.x = fx + self.y = fy + + def __add__(self, a): + """Add two group elements together.""" + # Deal with infinity: a + infinity == infinity + a == a. + if self.infinity: + return a + if a.infinity: + return self + if self.x == a.x: + if self.y != a.y: + # A point added to its own negation is infinity. + assert self.y + a.y == 0 + return GE() + else: + # For identical inputs, use the tangent (doubling formula). + lam = (3 * self.x**2) / (2 * self.y) + else: + # For distinct inputs, use the line through both points (adding formula). + lam = (self.y - a.y) / (self.x - a.x) + # Determine point opposite to the intersection of that line with the curve. + x = lam**2 - (self.x + a.x) + y = lam * (self.x - x) - self.y + return GE(x, y) + + @staticmethod + def mul(*aps): + """Compute a (batch) scalar group element multiplication. + + GE.mul((a1, p1), (a2, p2), (a3, p3)) is identical to a1*p1 + a2*p2 + a3*p3, + but more efficient.""" + # Reduce all the scalars modulo order first (so we can deal with negatives etc). + naps = [(a % GE.ORDER, p) for a, p in aps] + # Start with point at infinity. + r = GE() + # Iterate over all bit positions, from high to low. + for i in range(255, -1, -1): + # Double what we have so far. + r = r + r + # Add then add the points for which the corresponding scalar bit is set. + for (a, p) in naps: + if (a >> i) & 1: + r += p + return r + + def __rmul__(self, a): + """Multiply an integer with a group element.""" + if self == G: + return FAST_G.mul(a) + return GE.mul((a, self)) + + def __neg__(self): + """Compute the negation of a group element.""" + if self.infinity: + return self + return GE(self.x, -self.y) + + def to_bytes_compressed(self): + """Convert a non-infinite group element to 33-byte compressed encoding.""" + assert not self.infinity + return bytes([3 - self.y.is_even()]) + self.x.to_bytes() + + def to_bytes_uncompressed(self): + """Convert a non-infinite group element to 65-byte uncompressed encoding.""" + assert not self.infinity + return b'\x04' + self.x.to_bytes() + self.y.to_bytes() + + def to_bytes_xonly(self): + """Convert (the x coordinate of) a non-infinite group element to 32-byte xonly encoding.""" + assert not self.infinity + return self.x.to_bytes() + + @staticmethod + def lift_x(x): + """Return group element with specified field element as x coordinate (and even y).""" + y = (FE(x)**3 + 7).sqrt() + if y is None: + return None + if not y.is_even(): + y = -y + return GE(x, y) + + @staticmethod + def from_bytes(b): + """Convert a compressed or uncompressed encoding to a group element.""" + assert len(b) in (33, 65) + if len(b) == 33: + if b[0] != 2 and b[0] != 3: + return None + x = FE.from_bytes(b[1:]) + if x is None: + return None + r = GE.lift_x(x) + if r is None: + return None + if b[0] == 3: + r = -r + return r + else: + if b[0] != 4: + return None + x = FE.from_bytes(b[1:33]) + y = FE.from_bytes(b[33:]) + if y**2 != x**3 + 7: + return None + return GE(x, y) + + @staticmethod + def from_bytes_xonly(b): + """Convert a point given in xonly encoding to a group element.""" + assert len(b) == 32 + x = FE.from_bytes(b) + if x is None: + return None + return GE.lift_x(x) + + @staticmethod + def is_valid_x(x): + """Determine whether the provided field element is a valid X coordinate.""" + return (FE(x)**3 + 7).is_square() + + def __str__(self): + """Convert this group element to a string.""" + if self.infinity: + return "(inf)" + return f"({self.x},{self.y})" + + def __repr__(self): + """Get a string representation for this group element.""" + if self.infinity: + return "GE()" + return f"GE(0x{int(self.x):x},0x{int(self.y):x})" + +# The secp256k1 generator point +G = GE.lift_x(0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798) + + +class FastGEMul: + """Table for fast multiplication with a constant group element. + + Speed up scalar multiplication with a fixed point P by using a precomputed lookup table with + its powers of 2: + + table = [P, 2*P, 4*P, (2^3)*P, (2^4)*P, ..., (2^255)*P] + + During multiplication, the points corresponding to each bit set in the scalar are added up, + i.e. on average ~128 point additions take place. + """ + + def __init__(self, p): + self.table = [p] # table[i] = (2^i) * p + for _ in range(255): + p = p + p + self.table.append(p) + + def mul(self, a): + result = GE() + a = a % GE.ORDER + for bit in range(a.bit_length()): + if a & (1 << bit): + result += self.table[bit] + return result + +# Precomputed table with multiples of G for fast multiplication +FAST_G = FastGEMul(G) + +class TestFrameworkSecp256k1(unittest.TestCase): + def test_H(self): + H = sha256(G.to_bytes_uncompressed()).digest() + assert GE.lift_x(FE.from_bytes(H)) is not None + self.assertEqual(H.hex(), "50929b74c1a04954b78b4b6035e97a5e078a5a0f28ec96d547bfee9ace803ac0")