-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathcompute.py
336 lines (306 loc) · 12.3 KB
/
compute.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import numpy as np
from PIL import Image
import pickle
import sys
import argparse
import os
from matplotlib.widgets import Slider, Button
from scipy.cluster.vq import kmeans
from base import base_name
from scipy.spatial import Delaunay
from scipy.fftpack import fft
import heapq
import threading
import tkinter
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from matplotlib.figure import Figure
from tkinter.filedialog import askopenfilename
from functools import partial
from crdp import rdp
class ParamComputer:
def __init__(self, file_name, level_n):
self.root = tkinter.Tk()
if file_name:
self.file_name = file_name
else:
self.file_name = askopenfilename(title="Select file", filetypes=[
("image files", "*.jpg *.gif *.png")])
self.img = Image.open(self.file_name)
self.imgL = self.img.convert('L')
self.sample_ratio = 0.3
self.smooth_window = 11
self.epsilon = 0.01
self.levels = [100 for i in range(level_n)]
self.contours = None
def _initialize_raw_data(self):
self.raw_data = []
reverse_idx = {}
self.contour_ax.clear()
self.contour_ax.axis('off')
self.contour_ax.set_title(f'{sum(len(seg) for seg in self.contours.allsegs)} contours')
self.contour_ax.set(xlim=(0, 1), ylim=(0, 1))
for seg in self.contours.allsegs:
for poly in seg:
poly = np.array(poly) / max(self.img.width, self.img.height)
# down sample 1: make points more discrete
poly = (np.array(poly) * 1000).astype(int) / 1000
poly = [tuple(p) for p in poly]
# index points and deduplicate points shared cross polygons
poly2 = []
for p in poly:
if p not in reverse_idx:
reverse_idx[p] = len(reverse_idx)
self.raw_data.append(np.array(p))
poly2.append(p)
self.contour_ax.plot([p[0] for p in poly2], [
p[1] for p in poly2])
self.raw_data = np.array(self.raw_data)
def _smooth_path(self, path):
if self.smooth_window == 1:
return path
print('smoothing path with savgol_filter')
before_len = sum(np.linalg.norm(path[i]-path[i-1]) for i in range(1, len(path)))
from scipy.signal import savgol_filter
path = np.array(path)
path[:,0] = savgol_filter(path[:,0], self.smooth_window, 2)
path[:,1] = savgol_filter(path[:,1], self.smooth_window, 2)
after_len = sum(np.linalg.norm(path[i]-path[i-1]) for i in range(1, len(path)))
print(f'path length after smoothing: {before_len} -> {after_len}')
return path
def _rdp_downsample(self, path):
if self.epsilon == 0:
return path
print('down sampling path with rdp')
before_n = len(path)
path = rdp(path, epsilon=self.epsilon)
after_n = len(path)
print(f'samples on path path after rdp: {before_n} -> {after_n}')
return path
def _compute_path(self):
def do_work(self):
if len(self.samples) <= 1:
self.path = np.array([])
return
print(f'searching mst for {len(self.samples)} points')
g = self._mst()
print('searching st, ed')
st, ed = self._find_farthest_leaf_pair(g)
print('rearanging children order')
self._rearange_children_order(g, st, ed)
path = self._generate_path(g, st, ed)
# connect start and end if not too far apart
max_dis = max([np.linalg.norm(path[i-1] - path[i])
for i in range(1, len(path))])
print(f'max dis on path: {max_dis}')
if self._dis(st, ed) < 2 * max_dis:
print('connecting end and start')
path.append(self.samples[st])
path = self._smooth_path(path)
path = self._rdp_downsample(path)
self.path = np.array(path)
# Workaround stack size limit on windows.
# https://stackoverflow.com/questions/2917210/python-what-is-the-hard-recursion-limit-for-linux-mac-and-windows/2918118#2918118
threading.stack_size(100 * 1024 * 1024)
max_rec_depth = len(self.samples) + 100
sys.setrecursionlimit(max_rec_depth)
thread = threading.Thread(target=partial(do_work, self))
thread.start()
thread.join()
def _update(self):
if self.contours:
for coll in self.contours.collections:
coll.remove()
self.contours = self.contour_ax.contour(
self.imgL, origin='image', levels=sorted(set(self.levels)))
self._initialize_raw_data()
# down sample 2: randomly choose points with sample ratio
indices = np.random.choice(len(self.raw_data), int(
len(self.raw_data) * self.sample_ratio), replace=False)
self.samples = self.raw_data[indices]
self.sample_ax.clear()
self.path_ax.clear()
self.image_ax.axis('off')
self.sample_ax.axis('off')
self.path_ax.axis('off')
self.sample_ax.set_title(f'{str(len(self.samples))} samples')
self.sample_ax.scatter(self.samples[:, 0], self.samples[:, 1], s=0.1)
self._compute_path()
self.path_ax.set_title(f'{len(self.path)} points on path')
if len(self.path):
self.path_ax.plot(self.path[:, 0], self.path[:, 1], alpha=0.5)
def _dis(self, i, j):
return np.linalg.norm(self.samples[i] - self.samples[j])
def _find_farthest_leaf_pair(self, g):
def dfs(i, parent):
"""
Return
- farthest leaf id in thissubtree and distance to root i
- farthest leave pair in this subtree and distance between them
"""
farthest_leaf = i
farthest_leaf_dis = 0
farthest_leaf_pair = None
farthest_leaf_pair_dis = -1
leave_dis = []
for j, _ in g[i]:
if j == parent:
continue
l, ld, pair, pair_dis = dfs(j, i)
leave_dis.append((ld + 1, l))
if ld + 1 > farthest_leaf_dis:
farthest_leaf_dis = ld + 1
farthest_leaf = l
if farthest_leaf_pair_dis < pair_dis:
farthest_leaf_pair = pair
farthest_leaf_pair_dis = pair_dis
if len(leave_dis) >= 2:
(d1, l1), (d2, l2) = sorted(leave_dis)[-2:]
if d1 + d2 > farthest_leaf_pair_dis:
farthest_leaf_pair_dis = d1 + d2
farthest_leaf_pair = l1, l2
return farthest_leaf, farthest_leaf_dis, farthest_leaf_pair, farthest_leaf_pair_dis
for i in range(len(g)):
if len(g[i]):
l, ld, pair, pair_dis = dfs(i, -1)
if len(g[i]) == 1 and ld > pair_dis:
# root is a leave
return i, l
return pair
def _rearange_children_order(self, g, st, ed):
# reagange children list order to make sure ed is the last node to visit
# when starting from st
vis = set()
def dfs(i):
vis.add(i)
if i == ed:
return True
for j in range(len(g[i])):
if g[i][j][0] not in vis:
if dfs(g[i][j][0]):
g[i][j], g[i][-1] = g[i][-1], g[i][j]
return True
return False
dfs(st)
return st, ed
def _generate_path(self, g, st, ed):
res = []
vis = set()
def dfs(i):
vis.add(i)
res.append(self.samples[i])
if i == ed:
return True
leaf = True
for j, _ in g[i]:
if j not in vis:
leaf = False
if dfs(j):
return True
if not leaf:
# don't visit leaf twice
res.append(self.samples[i])
return False
dfs(st)
return res
def _mst(self):
print('running Delaunay triangulation')
n = len(self.samples)
tri = Delaunay(self.samples)
g = [[] for i in range(n)]
edges = {}
nodes = set()
for simplex in tri.simplices:
nodes |= set(simplex)
for k in range(3):
i, j = simplex[k - 1], simplex[k]
edge = min(i, j), max(i, j)
if edge not in edges:
edges[edge] = self._dis(i, j)
pq = [(d, i, j) for ((i, j), d) in edges.items()]
heapq.heapify(pq)
p = list(range(n))
def union(i, j):
p[find(i)] = find(j)
def find(i):
if p[i] == i:
return i
p[i] = find(p[i])
return p[i]
print('running kruskal')
# nodes may not contain all points as some points close to each other are treated as single points
cc = len(nodes)
while cc > 1:
d, i, j = heapq.heappop(pq)
if find(i) != find(j):
union(i, j)
g[i].append((j, d))
g[j].append((i, d))
cc -= 1
return g
def save(self):
X = fft(self.path[..., 0] + self.path[..., 1] * 1j)
out_fname = f'output/{base_name(self.file_name)}.param'
print(f'saving to {out_fname}')
pickle.dump(X, open(out_fname, 'wb'))
def _update_sample_ratio(self, v):
self.sample_ratio = v
self._update()
def _update_level_fun(self, i):
def f(v):
self.levels[i] = v
self._update()
return f
def _update_epsilon(self, v):
self.epsilon = v
self._update()
def _update_smooth_window(self, v):
self.smooth_window = int(v)
self._update()
def render(self):
self.fig = Figure(figsize=(13, 13), dpi=100)
((self.image_ax, self.contour_ax), (self.sample_ax,
self.path_ax)) = self.fig.subplots(2, 2)
self.root.wm_title(f"Compute - {base_name(self.file_name, True)}")
canvas = FigureCanvasTkAgg(self.fig, master=self.root)
canvas.draw()
canvas.get_tk_widget().pack(side=tkinter.TOP, fill=tkinter.BOTH, expand=1)
self.image_ax.set_title('image')
self.image_ax.imshow(self.img)
self.level_sliders = []
for i in range(len(self.levels)):
level = self.fig.add_axes(
[0.15, 0.015 * (i + 1), 0.7, 0.01])
slevel = Slider(level, f'contour level {i}', 0, 255, valinit=100)
slevel.on_changed(self._update_level_fun(i))
self.level_sliders.append(slevel)
self.fig.set_size_inches([13, 13])
ratio = self.fig.add_axes(
[0.15, 0.015 * (len(self.levels) + 1), 0.7, 0.01])
self.sratio = Slider(ratio, 'sample ratio', 0.01, 1,
valinit=self.sample_ratio, valstep=0.01)
self.sratio.on_changed(self._update_sample_ratio)
epsilon = self.fig.add_axes(
[0.15, 0.015 * (len(self.levels) + 2), 0.7, 0.01])
self.sepsilon = Slider(epsilon, 'epsilon', 0.00, 0.03,
valinit=self.epsilon, valstep=0.001)
self.sepsilon.on_changed(self._update_epsilon)
window = self.fig.add_axes(
[0.15, 0.015 * (len(self.levels) + 3), 0.7, 0.01])
self.swindow = Slider(window, 'smooth window', 1, 99,
valinit=self.smooth_window, valstep=2)
self.swindow.on_changed(self._update_smooth_window)
self._update()
tkinter.mainloop()
def main(args):
param_computer = ParamComputer(args.file_name, args.level_n)
param_computer.render()
param_computer.save()
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-f', '--file_name', type=str,
help='path to contour file', default='')
parser.add_argument('-n', '--level_n', type=int,
help='number of levels', default=1)
args = parser.parse_args()
main(args)