-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathnsga.py
207 lines (179 loc) · 7.65 KB
/
nsga.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
'''
Author: Jiaheng Hu
Partially based on https://github.com/haris989/NSGA-II
'''
import math
import random
import matplotlib.pyplot as plt
from toy_env import MultiAgentEnv
from scipy.special import softmax
from params import get_params
import numpy as np
params = get_params()
env = MultiAgentEnv(n_num_grids=params['env_grid_num'],
n_num_agents=params['n_agent_types'],
n_env_types=params['n_env_types'],
agent_num=params['agent_num'])
n_genes = params['n_agent_types'] * params['env_grid_num'] # 12 # number of variables
pop_size = 50 # 128 # population size
input_limits = np.array([-5, 5])
mutation_rate = 0.1
n_mutations = math.ceil((pop_size - 1) * n_genes * mutation_rate)
max_gen = 100
# both are to be maximized
# First function to optimize
def function1(x):
x = np.asarray(x).reshape([3, 4])
x = softmax(x, axis=1)
terrain = [4, 1, 2, 3] #first region: undeployed
return env.get_reward(x, terrain)
# Second function to optimize
def function2(x):
x = np.asarray(x).reshape([3, 4])
x = softmax(x, axis=1)
return -env.get_deployment_cost(x)
# Function to find index of list
def index_of(a,list):
for i in range(0,len(list)):
if list[i] == a:
return i
return -1
#Function to sort by values
def sort_by_values(list1, values):
sorted_list = []
while(len(sorted_list)!=len(list1)):
if index_of(min(values),values) in list1:
sorted_list.append(index_of(min(values),values))
values[index_of(min(values),values)] = math.inf
return sorted_list
#Function to carry out NSGA-II's fast non dominated sort
def fast_non_dominated_sort(values1, values2):
S=[[] for i in range(0,len(values1))]
front = [[]]
n=[0 for i in range(0,len(values1))]
rank = [0 for i in range(0, len(values1))]
for p in range(0,len(values1)):
S[p]=[]
n[p]=0
for q in range(0, len(values1)):
if (values1[p] > values1[q] and values2[p] > values2[q]) or (values1[p] >= values1[q] and values2[p] > values2[q]) or (values1[p] > values1[q] and values2[p] >= values2[q]):
if q not in S[p]:
S[p].append(q)
elif (values1[q] > values1[p] and values2[q] > values2[p]) or (values1[q] >= values1[p] and values2[q] > values2[p]) or (values1[q] > values1[p] and values2[q] >= values2[p]):
n[p] = n[p] + 1
if n[p]==0:
rank[p] = 0
if p not in front[0]:
front[0].append(p)
i = 0
while(front[i] != []):
Q=[]
for p in front[i]:
for q in S[p]:
n[q] =n[q] - 1
if( n[q]==0):
rank[q]=i+1
if q not in Q:
Q.append(q)
i = i+1
front.append(Q)
del front[len(front)-1]
return front
# Function to calculate crowding distance
def crowding_distance(values1, values2, front):
distance = [0 for i in range(0,len(front))]
sorted1 = sort_by_values(front, values1[:])
sorted2 = sort_by_values(front, values2[:])
distance[0] = 4444444444444444
distance[len(front) - 1] = 4444444444444444
for k in range(1,len(front)-1):
distance[k] = distance[k]+ (values1[sorted1[k+1]] - values2[sorted1[k-1]])/(max(values1)-min(values1))
for k in range(1,len(front)-1):
distance[k] = distance[k]+ (values1[sorted2[k+1]] - values2[sorted2[k-1]])/(max(values2)-min(values2))
return distance
def crossover(first_parent, sec_parent, crossover_pt):
beta = (
np.random.rand(1)[0]
)
p_new1 = first_parent[crossover_pt] - beta * (
first_parent[crossover_pt] - sec_parent[crossover_pt]
)
return np.hstack(
(first_parent[:crossover_pt], p_new1, sec_parent[crossover_pt + 1:])
) #seems that we only need one offspring
# Function to carry out the mutation operator
def mutation(population, n_mutations=n_mutations, input_limits=input_limits):
mutation_rows = np.random.choice(
np.arange(1, population.shape[0]), n_mutations, replace=True
)
mutation_columns = np.random.choice(
population.shape[1], n_mutations, replace=True
)
new_population = np.random.uniform(
input_limits[0], input_limits[1], size=population.shape
)
population[mutation_rows, mutation_columns] = new_population[mutation_rows, mutation_columns]
return population
def initialize_population(pop_size, n_genes, input_limits):
population = np.random.uniform(
input_limits[0], input_limits[1], size=(pop_size, n_genes)
)
return population
if __name__ == '__main__':
solution = initialize_population(pop_size, n_genes, input_limits).tolist()
gen_no = 0
while(gen_no<max_gen):
function1_values = [function1(solution[i])for i in range(0,pop_size)]
function2_values = [function2(solution[i])for i in range(0,pop_size)]
non_dominated_sorted_solution = fast_non_dominated_sort(function1_values[:],function2_values[:])
if(gen_no%10==0):
print(gen_no)
# # Disabled for now
# print("The best front for Generation number ",gen_no, " is")
# for valuez in non_dominated_sorted_solution[0]:
# print(round(solution[valuez],3),end=" ")
# print("\n")
crowding_distance_values=[]
for i in range(0,len(non_dominated_sorted_solution)):
crowding_distance_values.append(crowding_distance(function1_values[:],function2_values[:],non_dominated_sorted_solution[i][:]))
solution2 = solution[:]
# Generating offsprings
while(len(solution2)!=2*pop_size):
a1 = random.randint(0,pop_size-1)
b1 = random.randint(0,pop_size-1)
xp = np.random.randint(n_genes)
solution2.append(np.array(crossover(solution[a1], solution[b1], xp)))
# TODO: check mutate solution2
solution2 = mutation(np.array(solution2))
function1_values2 = [function1(solution2[i])for i in range(0,2*pop_size)]
function2_values2 = [function2(solution2[i])for i in range(0,2*pop_size)]
non_dominated_sorted_solution2 = fast_non_dominated_sort(function1_values2[:], function2_values2[:])
crowding_distance_values2=[]
for i in range(0, len(non_dominated_sorted_solution2)):
crowding_distance_values2.append(crowding_distance(function1_values2[:],function2_values2[:],non_dominated_sorted_solution2[i][:]))
new_solution = []
for i in range(0, len(non_dominated_sorted_solution2)):
non_dominated_sorted_solution2_1 = [index_of(non_dominated_sorted_solution2[i][j],non_dominated_sorted_solution2[i] ) for j in range(0,len(non_dominated_sorted_solution2[i]))]
front22 = sort_by_values(non_dominated_sorted_solution2_1[:], crowding_distance_values2[i][:])
front = [non_dominated_sorted_solution2[i][front22[j]] for j in range(0,len(non_dominated_sorted_solution2[i]))]
front.reverse()
for value in front:
new_solution.append(value)
if(len(new_solution)==pop_size):
break
if (len(new_solution) == pop_size):
break
solution = [solution2[i] for i in new_solution]
gen_no = gen_no + 1
#Lets plot the final front now
function1 = [i for i in function1_values]
function2 = [j * -1 for j in function2_values]
plt.xlabel('Coverage', fontsize=15)
plt.ylabel('Deployment Cost', fontsize=15)
plt.scatter(function1, function2)
plt.show()
x = solution2[function2_values.index(max(function2_values))].tolist()
# print()
print(env.get_integer(x))
# import ipdb
# ipdb.set_trace()