-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathglm.Rmd
222 lines (147 loc) · 7.55 KB
/
glm.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
---
title: "GLM with R"
author: "D.-L. Couturier / R. Nicholls / C. Chilamakuri "
date: '`r format(Sys.time(), "Last modified: %d %b %Y")`'
output:
html_document:
theme: united
highlight: tango
code_folding: show
toc: true
toc_depth: 2
toc_float: true
fig_width: 8
fig_height: 6
---
<!--- rmarkdown::render("~/courses/cruk/LinearModelAndExtensions/git_linear-models-r/glm.Rmd") --->
<!--- rmarkdown::render("/Volumes/Files/courses/cruk/LinearModelAndExtensions/git_linear-models-r/glm.Rmd") --->
```{r message = FALSE, warning = FALSE, echo = FALSE}
# change working directory: should be the directory containg the Markdown files:
# setwd("/Volumes/Files/courses/cruk/LinearModelAndExtensions/20210514/Practicals/")
# install gamlss package if needed
# install.packages("gamlss")
```
# Section 1: Logistic regression
We will analyse the data collected by Jones (Unpublished BSc dissertation, University of Southampton, 1975). The aim of the study was to define if the probability of having Bronchitis is influenced by smoking and/or pollution.
The data are stored under data/Bronchitis.csv and contains information on 212 participants.
### Section 1.1: importation and descriptive analysis
Lets starts by
* importing the data set *Bronchitis* with the function `read.csv()`
* displaying _bron_ (a dichotomous variable which equals 1 for participants having bronchitis and 0 otherwise) as a function of _cigs_, the number of cigarettes smoked daily.
```{r message = FALSE, warning = FALSE, echo = TRUE}
Bronchitis = read.csv("data/Bronchitis.csv",header=TRUE)
plot(Bronchitis$cigs,Bronchitis$bron,col="blue4",
ylab = "Absence/Presense of Bronchitis", xlab = "Daily number of cigarettes")
abline(h=c(0,1),col="light blue")
```
# Section 1.2: Model fit
Lets
* fit a logistic model by means the function `glm()` and by means of the function `gamlss()` of the library `gamlss`.
* display and analyse the results of the `glm` function : Use the function `summary()` to display the results of an R object of class `glm`.
```{r message = FALSE, warning = FALSE, echo = TRUE}
fit.glm = glm(bron~cigs,data=Bronchitis,family=binomial)
library(gamlss)
fit.gamlss = gamlss(bron~cigs,data=Bronchitis,family=BI)
summary(fit.glm)
```
Let's now define the estimated probability of having bronchitis for any number of daily smoked cigarette and display the corresponding logistic curve on a plot:
```{r message = FALSE, warning = FALSE, echo = TRUE}
plot(Bronchitis$cigs,Bronchitis$bron,col="blue4",
ylab = "Absence/Presense of Bronchitis", xlab = "Daily number of cigarettes")
abline(h=c(0,1),col="light blue")
axe.x = seq(0,40,length=1000)
f.x = exp(fit.glm$coef[1]+axe.x*fit.glm$coef[2])/(1+exp(fit.glm$coef[1]+axe.x*fit.glm$coef[2]))
lines(axe.x,f.x,col="pink2",lwd=2)
```
## Section 1.3: Model selection
As for linear models, model selection may be done by means of the function `anova()` used on the glm object of interest.
```{r message = FALSE, warning = FALSE, echo = TRUE}
anova(fit.glm,test="LRT")
```
## Section 1.3: Model check
Lets assess is the model fit seems satisfactory by means
* of the analysis of deviance residuals (function `plot()` on an object of class `glm`,
* of the analysis of randomised normalised quantile residuals (function `plot()` on an object of class `gamlss`,
```{r message = FALSE, warning = FALSE, echo = TRUE}
# deviance
par(mfrow=c(2,2),mar=c(3,5,3,0))
plot(fit.glm)
# randomised normalised quantile residuals
plot(gamlss(bron~cigs,data=Bronchitis,family=BI))
```
## Section 1.4: Fun
```{r message = FALSE, warning = FALSE, echo = TRUE}
# long format:
long = data.frame(mi = rep(c("MI","No MI"),c(104+189,11037+11034)),
treatment = rep(c("Aspirin","Placebo","Aspirin","Placebo"),c(104,189,11037,11034)))
# short format: 2 by 2 table
table2by2 = table(long$treatment,long$mi)
#
chisq.test(table2by2)
prop.test(table2by2[,"MI"],apply(table2by2,1,sum))
summary(glm(I(mi=="MI")~treatment,data=long,family="binomial"))
```
# Section 2: Poisson regression
The dataset *students.csv* shows the number of high school students diagnosed with an infectious disease for each day from the initial disease outbreak.
# Section 2.2: Importation
Lets
* import the dataset by means of the function `read.csv()`
* display the daily number of students diagnosed with the disease (variable `cases`) as a function of the days since the outbreak (variable `day`).
```{r message = FALSE, warning = FALSE, echo = TRUE}
students = read.csv("data/students.csv",header=TRUE)
plot(students$day,students$cases,col="blue4",
ylab = "Number of diagnosed students", xlab = "Days since initial outbreak")
abline(h=c(0),col="light blue")
```
# Section 2.2: Model fit
Lets
* fit a poisson model by means the function `glm()` and by means of the function `gamlss()` of the library `gamlss`.
* display and analyse the results of the `glm` function : Use the function `summary()` to display the results of an R object of class `glm`.
```{r message = FALSE, warning = FALSE, echo = TRUE}
fit.glm = glm(cases~day,data=students,family=poisson)
library(gamlss)
fit.gamlss = gamlss(cases~day,data=students,,family=PO)
summary(fit.glm)
```
Let's now define the estimated probability of having bronchitis for any number of daily smoked cigarette and display the corresponding logistic curve on a plot:
```{r message = FALSE, warning = FALSE, echo = TRUE}
plot(students$day,students$cases,col="blue4",
ylab = "Number of diagnosed students", xlab = "Days since initial outbreak")
abline(h=c(0),col="light blue")
axe.x = seq(0,120,length=1000)
f.x = exp(fit.glm$coef[1]+axe.x*fit.glm$coef[2])
lines(axe.x,f.x,col="pink2",lwd=2)
```
## Section 2.3: Model selection
As for linear models, model selection may be done by means of the function `anova()` used on the glm object of interest.
```{r message = FALSE, warning = FALSE, echo = TRUE}
anova(fit.glm,test="LRT")
```
## Section 2.3: Model check
Lets assess is the model fit seems satisfactory by means
* of the analysis of deviance residuals (function `plot()` on an object of class `glm`,
* of the analysis of randomised normalised quantile residuals (function `plot()` on an object of class `gamlss`,
```{r message = FALSE, warning = FALSE, echo = TRUE}
# deviance
par(mfrow=c(2,2),mar=c(3,5,3,0))
plot(fit.glm)
# randomised normalised quantile residuals
plot(fit.gamlss)
```
# Section 6: Practicals
### (i) *Bronchitis.csv*
Analyse further the Bronchitis data of Jones (1975) by
* first investigating if the probability of having bronchitis also depends on _pollution_ (variable `poll`),
* second investigating if there is an interaction between the variables `cigs` and `poll`.
### (ii) *myocardialinfarction.csv*
The file *myocardialinfarction.csv* indicates if a participant had a myocardial infarction attack (variable `infarction`) as well the participant's treatment (variable `treatment`).
Does _Aspirin_ decrease the probability to have a myocardial infarction attack ?
### (ii) *crabs.csv*
This data set is derived from Agresti (2007, Table 3.2, pp.76-77). It gives 6 variables for each of 173 female horseshoe crabs:
* Explanatory variables that are thought to affect this included the female crab’s color (C), spine condition (S), weightweight (Wt)
* C: the crab's colour,
* S: the crab's spine condition,
* Wt: the crab's weight,
* W: the crab's carapace width,
* Sa: the response outcome, i.e., the number of satellites.
Check if the width of female's back can explain the number of satellites attached by fitting a Poisson regression model with width.