forked from jjfeng/spinn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_data.py
64 lines (55 loc) · 1.56 KB
/
generate_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import sys
import time
import argparse
import pickle
import tensorflow as tf
import numpy as np
from data_generator import DataGenerator
from common import *
import data_gen_funcs
def parse_args():
''' parse command line arguments '''
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument('--seed',
type=int,
help='seed',
default=1)
parser.add_argument('--func-name',
type=str,
help='name of function from data_gen_funcs.py',
default='six_variable_multivar_func')
parser.add_argument('--out-file',
type=str,
default="_output/data.pkl")
parser.add_argument('--n-train',
type=int,
default=400)
parser.add_argument('--n-test',
type=int,
default=400)
parser.add_argument('--num-p',
type=int,
default=50)
parser.add_argument('--snr',
type=float,
default=2)
args = parser.parse_args()
return args
def main(args=sys.argv[1:]):
args = parse_args()
print(args)
data_gen = DataGenerator(
args.num_p,
getattr(data_gen_funcs, args.func_name),
data_gen_funcs.CLASSIFICATION_DICT[args.func_name],
snr=args.snr)
train_data = data_gen.create_data(args.n_train)
test_data = data_gen.create_data(args.n_test)
print("data_file %s" % args.out_file)
with open(args.out_file, "wb") as f:
pickle.dump({
"train": train_data,
"test": test_data},
f)
if __name__ == "__main__":
main(sys.argv[1:])