-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbaseline.py
211 lines (168 loc) · 8.41 KB
/
baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from scipy.stats import ttest_rel
from tqdm import tqdm
import copy
from data import generate_data, Generator
from model import AttentionModel
# https://github.com/wouterkool/attention-learn-to-route/blob/master/reinforce_baselines.py
def load_model(device,path,embed_dim,n_containers,max_stacks,max_tiers,n_encode_layers=3):
# https://pytorch.org/tutorials/beginner/saving_loading_models.html
#原来的模型
#model_loaded = AttentionModel(embed_dim=embed_dim, n_encode_layers=n_encode_layers, n_heads=8, tanh_clipping=10.,
# FF_hidden=512)
model_loaded = AttentionModel(device=device, embed_dim=embed_dim, n_encode_layers=n_encode_layers,
n_heads=8, tanh_clipping=10.
, n_containers=n_containers, max_stacks=max_stacks, max_tiers=max_tiers)
#should make cuda:index same
if torch.cuda.is_available():
model_loaded.load_state_dict(torch.load(path,map_location={'cuda:0' : device ,'cuda:1': device , 'cuda:2' :device ,
'cuda:3' : device ,'cuda:4': device , 'cuda:5' :device}))
#model_loaded.Decoder.Encoder.load_state_dict(torch.load(encoder_path))
else:
model_loaded.load_state_dict(torch.load(path, map_location=torch.device('cpu')))
# https://pytorch.org/docs/master/generated/torch.load.html
return model_loaded
class RolloutBaseline:
def __init__(self, model, task, weight_dir, n_rollout_samples=10000,
embed_dim=128,n_containers = 8,max_stacks=4,max_tiers=4, warmup_beta=0.8, wp_epochs=1, device='cpu',log_path='./csv/empty.txt',
from_checkpoint=False, path_to_checkpoint=None, epoch=0,
):
"""
Args:
model: current model
task: suffix for baseline checkpoint task
from_checkpoint: start from checkpoint flag
path_to_checkpoint: path to baseline model weights
wp_epochs: until when epoch reaches wp_n_epocohs do we warm-up
epoch: current epoch number
n_rollout_samples: number of samples to be generated for baseline dataset
warmup_beta: warmup mixing parameter (exp. exponential moving average parameter)
"""
self.n_rollout_samples = n_rollout_samples
self.cur_epoch = epoch
self.wp_epochs = wp_epochs
self.beta = warmup_beta
# controls the amount of warmup
self.alpha = 0.0
self.M = None
# Checkpoint params
self.task = task
self.from_checkpoint = from_checkpoint
self.path_to_checkpoint = path_to_checkpoint
# Problem params
self.embed_dim = embed_dim
self.n_containers = n_containers
self.max_stacks=max_stacks
self.max_tiers=max_tiers
self.weight_dir = weight_dir
self.device = device
self.log_path=log_path
# create and evaluate initial baseline
self._update_baseline(model, epoch)
def _update_baseline(self, model, epoch):
# Load or copy baseline model based on self.from_checkpoint condition
if self.from_checkpoint and self.alpha == 0:
print('Baseline model loaded')
with open(self.log_path, 'a') as f:
f.write('Baseline model loaded \n')
self.model = self.load_model(self.path_to_checkpoint, embed_dim=self.embed_dim, n_containers = self.n_containers,max_stacks=self.max_stacks,max_tiers=self.max_tiers)
else:
print('Baseline model copied')
with open(self.log_path, 'a') as f:
f.write('Baseline model copied \n')
self.model = self.copy_model(model)
# For checkpoint
#torch.save(self.model.state_dict(), '%s%s_epoch%s.pt' % (self.weight_dir, self.task, epoch))
self.model = self.model.to(self.device)
# We generate a new dataset for baseline model on each baseline update to prevent possible overfitting
self.dataset = Generator(self.device, n_samples=self.n_rollout_samples, n_containers = self.n_containers,max_stacks=self.max_stacks,max_tiers=self.max_tiers)
self.bl_vals = self.rollout(self.model, self.dataset).cpu().numpy()
self.mean = self.bl_vals.mean()
self.cur_epoch = epoch
print(f'_update_baseline : Evaluating baseline model on baseline dataset (epoch = {epoch})')
with open(self.log_path, 'a') as f:
f.write(f'_update_baseline : Evaluating baseline model on baseline dataset (epoch = {epoch}) \n')
print(f'bl_vals = {self.bl_vals} ,means = {self.mean}')
with open(self.log_path, 'a') as f:
f.write(f'bl_vals = {self.bl_vals} ,means = {self.mean} \n')
def ema_eval(self, cost): # def eval
"""exponential moving average (only for warm-up epochs)
"""
if self.M is None: # first iteration
self.M = cost.mean()
else:
self.M = self.beta * self.M + (1. - self.beta) * cost.mean()
# return self.M
return self.M.detach()
def eval(self, batch, cost):
"""Evaluates current baseline model on single training batch
"""
if self.alpha == 0:
return self.ema_eval(cost)
if self.alpha < 1:
v_ema = self.ema_eval(cost)
else:
v_ema = 0.0
with torch.no_grad():
v_b, _ = self.model(batch, decode_type='greedy')
# Combination of baseline cost and exp. moving average cost
return self.alpha * v_b + (1 - self.alpha) * v_ema
def eval_all(self, dataset):
"""Evaluates current baseline model on the whole dataset only for non warm-up epochs
"""
if self.alpha < 1:
return None
val_costs = self.rollout(self.model, dataset, batch=2048)
return val_costs
def epoch_callback(self, model, epoch):
"""Compares current baseline model with the training model and updates baseline if it is improved
"""
self.cur_epoch = epoch
print(f'Evaluating candidate model on baseline dataset (callback epoch = {self.cur_epoch})')
with open(self.log_path, 'a') as f:
f.write(f'Evaluating candidate model on baseline dataset (callback epoch = {self.cur_epoch}) \n')
model.eval()
with torch.no_grad():
candidate_vals = self.rollout(model=model, dataset=self.dataset).cpu().numpy() # costs for training model on baseline dataset
candidate_mean = candidate_vals.mean()
model.train()
print(f'Epoch {self.cur_epoch} candidate mean {candidate_mean}, baseline mean {self.mean}')
with open(self.log_path, 'a') as f:
f.write(f'Epoch {self.cur_epoch} candidate mean {candidate_mean}, baseline mean {self.mean} \n')
if candidate_mean < self.mean:
t, p = ttest_rel(candidate_vals, self.bl_vals) # scipy.stats.ttest_rel
p_val = p / 2
print(f'p-value: {p_val}')
if p_val < 0.05:
print('Update baseline')
with open(self.log_path, 'a') as f:
f.write('Update baseline\n')
self._update_baseline(model, self.cur_epoch)
# alpha controls the amount of warmup
if self.alpha < 1.0:
self.alpha = (self.cur_epoch + 1) / float(self.wp_epochs)
print(f'alpha was updated to {self.alpha}')
def copy_model(self, model):
new_model = copy.deepcopy(model)
return new_model
#这里本来有self
def rollout(self,model, dataset, batch=1000, disable_tqdm=False):
costs_list = []
dataloader = DataLoader(dataset, batch_size=batch)
#for inputs in tqdm(dataloader, disable=disable_tqdm, desc='Rollout greedy execution'):
for t,inputs in enumerate(dataloader):
with torch.no_grad():
# ~ inputs = list(map(lambda x: x.to(self.device), inputs))
cost, _ = model(inputs, decode_type='greedy')
# costs_list.append(cost.data.cpu())
costs_list.append(cost)
return torch.cat(costs_list, 0)
# def validate(dataset, model, batch = 1000):
# """Validates model on given dataset in greedy mode
# """
# val_costs = rollout(model, dataset, batch = batch)
# mean_cost = val_costs.mean()
# print(f"Validation score: {np.round(mean_cost, 4)}")
# return mean_cost