-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSTDNN_STSB.log
executable file
·412 lines (411 loc) · 21.9 KB
/
STDNN_STSB.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
01/05/2021 07:55:09 1
01/05/2021 07:55:09 Launching the MT-DNN training
01/05/2021 07:55:09 Loading data/canonical_data/bert_base_uncased_lower/stsb_train.json as task 0
01/05/2021 07:55:09 ####################
01/05/2021 07:55:09 {'log_file': 'checkpoints/2021-01-05T1955_bert-base-uncased_stsb/log.log', 'tensorboard': False, 'tensorboard_logdir': 'tensorboard_logdir', 'init_checkpoint': 'bert-base-uncased', 'data_dir': 'data/canonical_data/bert_base_uncased_lower', 'data_sort_on': False, 'name': 'farmer', 'task_def': 'experiments/glue/glue_task_def.yml', 'train_datasets': ['stsb'], 'test_datasets': ['stsb'], 'glue_format_on': False, 'mkd_opt': 0, 'do_padding': False, 'update_bert_opt': 0, 'multi_gpu_on': True, 'mem_cum_type': 'simple', 'answer_num_turn': 5, 'answer_mem_drop_p': 0.1, 'answer_att_hidden_size': 128, 'answer_att_type': 'bilinear', 'answer_rnn_type': 'gru', 'answer_sum_att_type': 'bilinear', 'answer_merge_opt': 1, 'answer_mem_type': 1, 'max_answer_len': 10, 'answer_dropout_p': 0.1, 'answer_weight_norm_on': False, 'dump_state_on': False, 'answer_opt': 1, 'mtl_opt': 0, 'ratio': 0, 'mix_opt': 0, 'max_seq_len': 512, 'init_ratio': 1, 'encoder_type': <EncoderModelType.BERT: 1>, 'num_hidden_layers': -1, 'bert_model_type': 'bert-base-uncased', 'do_lower_case': False, 'masked_lm_prob': 0.15, 'short_seq_prob': 0.2, 'max_predictions_per_seq': 128, 'bin_on': False, 'bin_size': 64, 'bin_grow_ratio': 0.5, 'cuda': True, 'log_per_updates': 500, 'save_per_updates': 10000, 'save_per_updates_on': False, 'epochs': 20, 'batch_size': 16, 'batch_size_eval': 8, 'optimizer': 'adamax', 'grad_clipping': 0.0, 'global_grad_clipping': 1.0, 'weight_decay': 0, 'learning_rate': 5e-05, 'momentum': 0, 'warmup': 0.1, 'warmup_schedule': 'warmup_linear', 'adam_eps': 1e-06, 'vb_dropout': True, 'dropout_p': 0.1, 'dropout_w': 0.0, 'bert_dropout_p': 0.1, 'model_ckpt': 'checkpoints/model_0.pt', 'resume': False, 'have_lr_scheduler': True, 'multi_step_lr': '10,20,30', 'lr_gamma': 0.5, 'scheduler_type': 'ms', 'output_dir': 'checkpoints/2021-01-05T1955_bert-base-uncased_stsb', 'seed': 2018, 'grad_accumulation_step': 1, 'fp16': False, 'fp16_opt_level': 'O1', 'adv_train': False, 'adv_opt': 0, 'adv_norm_level': 0, 'adv_p_norm': 'inf', 'adv_alpha': 1, 'adv_k': 1, 'adv_step_size': 0.001, 'adv_noise_var': 1e-05, 'adv_epsilon': 1e-06, 'loss_pred': True, 'collect_uncertainty': None, 'collect_topk': 0.1, 'load_ranked_data': None, 'mc_dropout': 0, 'finetune': False, 'encode_mode': False, 'task_def_list': [{'self': '{}', 'label_vocab': 'None', 'n_class': '1', 'data_type': '<DataFormat.PremiseAndOneHypothesis: 2>', 'task_type': '<TaskType.Regression: 2>', 'metric_meta': '(<Metric.Pearson: 3>, <Metric.Spearman: 4>)', 'split_names': "['train', 'dev', 'test']", 'enable_san': 'False', 'dropout_p': 'None', 'loss': '<LossCriterion.MseCriterion: 1>', 'kd_loss': '<LossCriterion.MseCriterion: 1>', 'adv_loss': '<LossCriterion.MseCriterion: 1>', '__class__': "<class 'experiments.exp_def.TaskDef'>"}]}
01/05/2021 07:55:09 ####################
01/05/2021 07:55:09 ############# Gradient Accumulation Info #############
01/05/2021 07:55:09 number of step: 7200
01/05/2021 07:55:09 number of grad grad_accumulation step: 1
01/05/2021 07:55:09 adjusted number of step: 7200
01/05/2021 07:55:09 ############# Gradient Accumulation Info #############
01/05/2021 07:55:25
############# Model Arch of MT-DNN #############
SANBertNetwork(
(dropout_list): ModuleList(
(0): DropoutWrapper()
)
(bert): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(30522, 768, padding_idx=0)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(1): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(2): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(3): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(4): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(5): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(6): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(7): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(8): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(9): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(10): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(11): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
(loss_pred_fc): Linear(in_features=768, out_features=1, bias=True)
(scoring_list): ModuleList(
(0): Linear(in_features=768, out_features=1, bias=True)
)
)
01/05/2021 07:55:25 Total number of params: 109483778
01/05/2021 07:55:25 At epoch 0
01/05/2021 07:55:26 Task [ 0] updates[ 1] train loss[17.86851] remaining[0:06:30]
01/05/2021 07:56:27 Task stsb -- epoch 0 -- Dev Pearson: 84.225
01/05/2021 07:56:27 Task stsb -- epoch 0 -- Dev Spearman: 84.849
01/05/2021 07:56:30 [new test scores saved.]
01/05/2021 07:56:34 At epoch 1
01/05/2021 07:56:54 Task [ 0] updates[ 500] train loss[5.43459] remaining[0:00:31]
01/05/2021 07:57:29 Task stsb -- epoch 1 -- Dev Pearson: 86.327
01/05/2021 07:57:29 Task stsb -- epoch 1 -- Dev Spearman: 86.538
01/05/2021 07:57:31 [new test scores saved.]
01/05/2021 07:57:35 At epoch 2
01/05/2021 07:58:24 Task [ 0] updates[ 1000] train loss[3.48710] remaining[0:00:14]
01/05/2021 07:58:44 Task stsb -- epoch 2 -- Dev Pearson: 87.430
01/05/2021 07:58:44 Task stsb -- epoch 2 -- Dev Spearman: 87.300
01/05/2021 07:58:47 [new test scores saved.]
01/05/2021 07:58:51 At epoch 3
01/05/2021 07:59:53 Task stsb -- epoch 3 -- Dev Pearson: 87.963
01/05/2021 07:59:53 Task stsb -- epoch 3 -- Dev Spearman: 87.832
01/05/2021 07:59:56 [new test scores saved.]
01/05/2021 08:00:00 At epoch 4
01/05/2021 08:00:11 Task [ 0] updates[ 1500] train loss[2.76470] remaining[0:00:55]
01/05/2021 08:01:11 Task stsb -- epoch 4 -- Dev Pearson: 88.129
01/05/2021 08:01:12 Task stsb -- epoch 4 -- Dev Spearman: 88.030
01/05/2021 08:01:15 [new test scores saved.]
01/05/2021 08:01:32 At epoch 5
01/05/2021 08:02:12 Task [ 0] updates[ 2000] train loss[2.37442] remaining[0:00:31]
01/05/2021 08:02:48 Task stsb -- epoch 5 -- Dev Pearson: 88.488
01/05/2021 08:02:48 Task stsb -- epoch 5 -- Dev Spearman: 88.385
01/05/2021 08:02:51 [new test scores saved.]
01/05/2021 08:02:55 At epoch 6
01/05/2021 08:03:50 Task [ 0] updates[ 2500] train loss[2.12292] remaining[0:00:03]
01/05/2021 08:03:57 Task stsb -- epoch 6 -- Dev Pearson: 88.316
01/05/2021 08:03:57 Task stsb -- epoch 6 -- Dev Spearman: 87.998
01/05/2021 08:04:00 [new test scores saved.]
01/05/2021 08:04:04 At epoch 7
01/05/2021 08:05:09 Task stsb -- epoch 7 -- Dev Pearson: 88.323
01/05/2021 08:05:09 Task stsb -- epoch 7 -- Dev Spearman: 88.032
01/05/2021 08:05:12 [new test scores saved.]
01/05/2021 08:05:17 At epoch 8
01/05/2021 08:05:37 Task [ 0] updates[ 3000] train loss[1.94736] remaining[0:00:39]
01/05/2021 08:06:28 Task stsb -- epoch 8 -- Dev Pearson: 88.342
01/05/2021 08:06:28 Task stsb -- epoch 8 -- Dev Spearman: 87.981
01/05/2021 08:06:31 [new test scores saved.]
01/05/2021 08:06:36 At epoch 9
01/05/2021 08:07:26 Task [ 0] updates[ 3500] train loss[1.81994] remaining[0:00:19]
01/05/2021 08:07:49 Task stsb -- epoch 9 -- Dev Pearson: 88.528
01/05/2021 08:07:49 Task stsb -- epoch 9 -- Dev Spearman: 88.230
01/05/2021 08:07:52 [new test scores saved.]
01/05/2021 08:07:56 At epoch 10
01/05/2021 08:08:55 Task stsb -- epoch 10 -- Dev Pearson: 88.401
01/05/2021 08:08:55 Task stsb -- epoch 10 -- Dev Spearman: 88.129
01/05/2021 08:08:57 [new test scores saved.]
01/05/2021 08:09:01 At epoch 11
01/05/2021 08:09:07 Task [ 0] updates[ 4000] train loss[1.72094] remaining[0:00:45]
01/05/2021 08:09:55 Task stsb -- epoch 11 -- Dev Pearson: 88.391
01/05/2021 08:09:55 Task stsb -- epoch 11 -- Dev Spearman: 87.905
01/05/2021 08:09:58 [new test scores saved.]
01/05/2021 08:10:02 At epoch 12
01/05/2021 08:10:25 Task [ 0] updates[ 4500] train loss[1.64401] remaining[0:00:22]
01/05/2021 08:10:47 Task stsb -- epoch 12 -- Dev Pearson: 88.446
01/05/2021 08:10:47 Task stsb -- epoch 12 -- Dev Spearman: 88.030
01/05/2021 08:10:49 [new test scores saved.]
01/05/2021 08:10:53 At epoch 13
01/05/2021 08:11:29 Task [ 0] updates[ 5000] train loss[1.58042] remaining[0:00:04]
01/05/2021 08:11:36 Task stsb -- epoch 13 -- Dev Pearson: 88.528
01/05/2021 08:11:36 Task stsb -- epoch 13 -- Dev Spearman: 88.103
01/05/2021 08:11:38 [new test scores saved.]
01/05/2021 08:11:42 At epoch 14
01/05/2021 08:12:25 Task stsb -- epoch 14 -- Dev Pearson: 88.399
01/05/2021 08:12:25 Task stsb -- epoch 14 -- Dev Spearman: 87.984
01/05/2021 08:12:27 [new test scores saved.]
01/05/2021 08:12:31 At epoch 15
01/05/2021 08:12:42 Task [ 0] updates[ 5500] train loss[1.52723] remaining[0:00:29]
01/05/2021 08:13:14 Task stsb -- epoch 15 -- Dev Pearson: 88.582
01/05/2021 08:13:14 Task stsb -- epoch 15 -- Dev Spearman: 88.155
01/05/2021 08:13:16 [new test scores saved.]
01/05/2021 08:13:20 At epoch 16
01/05/2021 08:13:47 Task [ 0] updates[ 6000] train loss[1.48438] remaining[0:00:13]
01/05/2021 08:14:03 Task stsb -- epoch 16 -- Dev Pearson: 88.666
01/05/2021 08:14:03 Task stsb -- epoch 16 -- Dev Spearman: 88.221
01/05/2021 08:14:06 [new test scores saved.]
01/05/2021 08:14:10 At epoch 17
01/05/2021 08:14:53 Task stsb -- epoch 17 -- Dev Pearson: 88.667
01/05/2021 08:14:53 Task stsb -- epoch 17 -- Dev Spearman: 88.249
01/05/2021 08:14:55 [new test scores saved.]
01/05/2021 08:15:00 At epoch 18
01/05/2021 08:15:02 Task [ 0] updates[ 6500] train loss[1.44567] remaining[0:00:37]
01/05/2021 08:15:43 Task stsb -- epoch 18 -- Dev Pearson: 88.680
01/05/2021 08:15:43 Task stsb -- epoch 18 -- Dev Spearman: 88.249
01/05/2021 08:15:46 [new test scores saved.]
01/05/2021 08:15:50 At epoch 19
01/05/2021 08:16:08 Task [ 0] updates[ 7000] train loss[1.41174] remaining[0:00:22]
01/05/2021 08:16:33 Task stsb -- epoch 19 -- Dev Pearson: 88.645
01/05/2021 08:16:33 Task stsb -- epoch 19 -- Dev Spearman: 88.225
01/05/2021 08:16:35 [new test scores saved.]