-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMTDNN_LMHL5_8_ALL.log
688 lines (687 loc) · 43.5 KB
/
MTDNN_LMHL5_8_ALL.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
01/07/2021 10:39:42 1
01/07/2021 10:39:42 Launching the MT-DNN training
01/07/2021 10:39:42 Loading data/canonical_data/bert_base_uncased_lower/mnli_train.json as task 0
01/07/2021 10:42:01 Loading data/canonical_data/bert_base_uncased_lower/rte_train.json as task 1
01/07/2021 10:42:01 Loading data/canonical_data/bert_base_uncased_lower/qqp_train.json as task 2
01/07/2021 10:43:57 Loading data/canonical_data/bert_base_uncased_lower/qnli_train.json as task 3
01/07/2021 10:44:08 Loading data/canonical_data/bert_base_uncased_lower/mrpc_train.json as task 4
01/07/2021 10:44:08 Loading data/canonical_data/bert_base_uncased_lower/sst_train.json as task 5
01/07/2021 10:44:13 Loading data/canonical_data/bert_base_uncased_lower/cola_train.json as task 6
01/07/2021 10:44:13 Loading data/canonical_data/bert_base_uncased_lower/stsb_train.json as task 7
01/07/2021 10:44:22 ####################
01/07/2021 10:44:22 {'log_file': 'checkpoints/2021-01-07T2239_LM8/log.log', 'tensorboard': False, 'tensorboard_logdir': 'tensorboard_logdir', 'init_checkpoint': 'bert-base-uncased', 'data_dir': 'data/canonical_data/bert_base_uncased_lower', 'data_sort_on': False, 'name': 'farmer', 'task_def': 'experiments/glue/glue_task_def.yml', 'train_datasets': ['mnli', 'rte', 'qqp', 'qnli', 'mrpc', 'sst', 'cola', 'stsb'], 'test_datasets': ['mnli_matched', 'mnli_mismatched', 'rte', 'qqp', 'qnli', 'mrpc', 'sst', 'cola', 'stsb'], 'glue_format_on': False, 'mkd_opt': 0, 'do_padding': False, 'update_bert_opt': 0, 'multi_gpu_on': True, 'mem_cum_type': 'simple', 'answer_num_turn': 5, 'answer_mem_drop_p': 0.1, 'answer_att_hidden_size': 128, 'answer_att_type': 'bilinear', 'answer_rnn_type': 'gru', 'answer_sum_att_type': 'bilinear', 'answer_merge_opt': 1, 'answer_mem_type': 1, 'max_answer_len': 10, 'answer_dropout_p': 0.1, 'answer_weight_norm_on': False, 'dump_state_on': False, 'answer_opt': 1, 'mtl_opt': 0, 'ratio': 0, 'mix_opt': 0, 'max_seq_len': 512, 'init_ratio': 1, 'encoder_type': <EncoderModelType.BERT: 1>, 'num_hidden_layers': -1, 'bert_model_type': 'bert-base-uncased', 'do_lower_case': False, 'masked_lm_prob': 0.15, 'short_seq_prob': 0.2, 'max_predictions_per_seq': 128, 'bin_on': False, 'bin_size': 64, 'bin_grow_ratio': 0.5, 'cuda': True, 'log_per_updates': 500, 'save_per_updates': 10000, 'save_per_updates_on': False, 'epochs': 10, 'batch_size': 8, 'batch_size_eval': 8, 'optimizer': 'adamax', 'grad_clipping': 0.0, 'global_grad_clipping': 1.0, 'weight_decay': 0, 'learning_rate': 5e-05, 'momentum': 0, 'warmup': 0.1, 'warmup_schedule': 'warmup_linear', 'adam_eps': 1e-06, 'vb_dropout': True, 'dropout_p': 0.1, 'dropout_w': 0.0, 'bert_dropout_p': 0.1, 'model_ckpt': 'checkpoints/model_0.pt', 'resume': False, 'have_lr_scheduler': True, 'multi_step_lr': '10,20,30', 'lr_gamma': 0.5, 'scheduler_type': 'ms', 'output_dir': 'checkpoints/2021-01-07T2239_LM8', 'seed': 2018, 'grad_accumulation_step': 1, 'fp16': False, 'fp16_opt_level': 'O1', 'adv_train': False, 'adv_opt': 0, 'adv_norm_level': 0, 'adv_p_norm': 'inf', 'adv_alpha': 1, 'adv_k': 1, 'adv_step_size': 0.001, 'adv_noise_var': 1e-05, 'adv_epsilon': 1e-06, 'loss_pred': True, 'collect_uncertainty': None, 'collect_topk': 0.1, 'load_ranked_data': 'eval_loss_rank_0.05.pkl', 'mc_dropout': 0, 'finetune': False, 'encode_mode': False, 'task_def_list': [{'self': '{}', 'label_vocab': '<data_utils.vocab.Vocabulary object at 0x7fa64167d400>', 'n_class': '3', 'data_type': '<DataFormat.PremiseAndOneHypothesis: 2>', 'task_type': '<TaskType.Classification: 1>', 'metric_meta': '(<Metric.ACC: 0>,)', 'split_names': "['train', 'matched_dev', 'mismatched_dev', 'matched_test', 'mismatched_test']", 'enable_san': 'False', 'dropout_p': '0.1', 'loss': '<LossCriterion.CeCriterion: 0>', 'kd_loss': '<LossCriterion.MseCriterion: 1>', 'adv_loss': '<LossCriterion.SymKlCriterion: 7>', '__class__': "<class 'experiments.exp_def.TaskDef'>"}, {'self': '{}', 'label_vocab': '<data_utils.vocab.Vocabulary object at 0x7fa64167d610>', 'n_class': '2', 'data_type': '<DataFormat.PremiseAndOneHypothesis: 2>', 'task_type': '<TaskType.Classification: 1>', 'metric_meta': '(<Metric.ACC: 0>,)', 'split_names': "['train', 'dev', 'test']", 'enable_san': 'False', 'dropout_p': 'None', 'loss': '<LossCriterion.CeCriterion: 0>', 'kd_loss': '<LossCriterion.MseCriterion: 1>', 'adv_loss': '<LossCriterion.SymKlCriterion: 7>', '__class__': "<class 'experiments.exp_def.TaskDef'>"}, {'self': '{}', 'label_vocab': 'None', 'n_class': '2', 'data_type': '<DataFormat.PremiseAndOneHypothesis: 2>', 'task_type': '<TaskType.Classification: 1>', 'metric_meta': '(<Metric.ACC: 0>, <Metric.F1: 1>)', 'split_names': "['train', 'dev', 'test']", 'enable_san': 'False', 'dropout_p': 'None', 'loss': '<LossCriterion.CeCriterion: 0>', 'kd_loss': '<LossCriterion.MseCriterion: 1>', 'adv_loss': '<LossCriterion.SymKlCriterion: 7>', '__class__': "<class 'experiments.exp_def.TaskDef'>"}, {'self': '{}', 'label_vocab': '<data_utils.vocab.Vocabulary object at 0x7fa64167d3d0>', 'n_class': '2', 'data_type': '<DataFormat.PremiseAndOneHypothesis: 2>', 'task_type': '<TaskType.Classification: 1>', 'metric_meta': '(<Metric.ACC: 0>,)', 'split_names': "['train', 'dev', 'test']", 'enable_san': 'False', 'dropout_p': 'None', 'loss': '<LossCriterion.CeCriterion: 0>', 'kd_loss': '<LossCriterion.MseCriterion: 1>', 'adv_loss': '<LossCriterion.SymKlCriterion: 7>', '__class__': "<class 'experiments.exp_def.TaskDef'>"}, {'self': '{}', 'label_vocab': 'None', 'n_class': '2', 'data_type': '<DataFormat.PremiseAndOneHypothesis: 2>', 'task_type': '<TaskType.Classification: 1>', 'metric_meta': '(<Metric.ACC: 0>, <Metric.F1: 1>)', 'split_names': "['train', 'dev', 'test']", 'enable_san': 'False', 'dropout_p': 'None', 'loss': '<LossCriterion.CeCriterion: 0>', 'kd_loss': '<LossCriterion.MseCriterion: 1>', 'adv_loss': '<LossCriterion.SymKlCriterion: 7>', '__class__': "<class 'experiments.exp_def.TaskDef'>"}, {'self': '{}', 'label_vocab': 'None', 'n_class': '2', 'data_type': '<DataFormat.PremiseOnly: 1>', 'task_type': '<TaskType.Classification: 1>', 'metric_meta': '(<Metric.ACC: 0>,)', 'split_names': "['train', 'dev', 'test']", 'enable_san': 'False', 'dropout_p': 'None', 'loss': '<LossCriterion.CeCriterion: 0>', 'kd_loss': '<LossCriterion.MseCriterion: 1>', 'adv_loss': '<LossCriterion.SymKlCriterion: 7>', '__class__': "<class 'experiments.exp_def.TaskDef'>"}, {'self': '{}', 'label_vocab': 'None', 'n_class': '2', 'data_type': '<DataFormat.PremiseOnly: 1>', 'task_type': '<TaskType.Classification: 1>', 'metric_meta': '(<Metric.ACC: 0>, <Metric.MCC: 2>)', 'split_names': "['train', 'dev', 'test']", 'enable_san': 'False', 'dropout_p': '0.05', 'loss': '<LossCriterion.CeCriterion: 0>', 'kd_loss': '<LossCriterion.MseCriterion: 1>', 'adv_loss': '<LossCriterion.SymKlCriterion: 7>', '__class__': "<class 'experiments.exp_def.TaskDef'>"}, {'self': '{}', 'label_vocab': 'None', 'n_class': '1', 'data_type': '<DataFormat.PremiseAndOneHypothesis: 2>', 'task_type': '<TaskType.Regression: 2>', 'metric_meta': '(<Metric.Pearson: 3>, <Metric.Spearman: 4>)', 'split_names': "['train', 'dev', 'test']", 'enable_san': 'False', 'dropout_p': 'None', 'loss': '<LossCriterion.MseCriterion: 1>', 'kd_loss': '<LossCriterion.MseCriterion: 1>', 'adv_loss': '<LossCriterion.MseCriterion: 1>', '__class__': "<class 'experiments.exp_def.TaskDef'>"}]}
01/07/2021 10:44:22 ####################
01/07/2021 10:44:22 ############# Gradient Accumulation Info #############
01/07/2021 10:44:22 number of step: 59570
01/07/2021 10:44:22 number of grad grad_accumulation step: 1
01/07/2021 10:44:22 adjusted number of step: 59570
01/07/2021 10:44:22 ############# Gradient Accumulation Info #############
01/07/2021 10:44:35
############# Model Arch of MT-DNN #############
SANBertNetwork(
(dropout_list): ModuleList(
(0): DropoutWrapper()
(1): DropoutWrapper()
(2): DropoutWrapper()
(3): DropoutWrapper()
(4): DropoutWrapper()
(5): DropoutWrapper()
(6): DropoutWrapper()
(7): DropoutWrapper()
)
(bert): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(30522, 768, padding_idx=0)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(1): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(2): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(3): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(4): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(5): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(6): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(7): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(8): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(9): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(10): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(11): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
(loss_pred_fc): Linear(in_features=768, out_features=1, bias=True)
(scoring_list): ModuleList(
(0): Linear(in_features=768, out_features=3, bias=True)
(1): Linear(in_features=768, out_features=2, bias=True)
(2): Linear(in_features=768, out_features=2, bias=True)
(3): Linear(in_features=768, out_features=2, bias=True)
(4): Linear(in_features=768, out_features=2, bias=True)
(5): Linear(in_features=768, out_features=2, bias=True)
(6): Linear(in_features=768, out_features=2, bias=True)
(7): Linear(in_features=768, out_features=1, bias=True)
)
)
01/07/2021 10:44:35 Total number of params: 109495313
01/07/2021 10:44:35 At epoch 0
01/07/2021 10:44:35 Task [ 0] updates[ 1] train loss[1.25012] remaining[0:40:29]
01/07/2021 10:45:38 Task [ 5] updates[ 500] train loss[1.00462] remaining[0:11:36]
01/07/2021 10:46:42 Task [ 2] updates[ 1000] train loss[0.91503] remaining[0:10:29]
01/07/2021 10:47:44 Task [ 0] updates[ 1500] train loss[0.87657] remaining[0:09:23]
01/07/2021 10:48:47 Task [ 2] updates[ 2000] train loss[0.84678] remaining[0:08:19]
01/07/2021 10:49:49 Task [ 2] updates[ 2500] train loss[0.82811] remaining[0:07:14]
01/07/2021 10:50:52 Task [ 5] updates[ 3000] train loss[0.81454] remaining[0:06:12]
01/07/2021 10:51:56 Task [ 3] updates[ 3500] train loss[0.78920] remaining[0:05:09]
01/07/2021 10:52:59 Task [ 3] updates[ 4000] train loss[0.76571] remaining[0:04:06]
01/07/2021 10:54:02 Task [ 2] updates[ 4500] train loss[0.74492] remaining[0:03:03]
01/07/2021 10:55:06 Task [ 2] updates[ 5000] train loss[0.72725] remaining[0:02:00]
01/07/2021 10:56:09 Task [ 2] updates[ 5500] train loss[0.71034] remaining[0:00:57]
01/07/2021 10:57:35 Task mnli_matched -- epoch 0 -- Dev ACC: 66.765
01/07/2021 10:58:04 [new test scores saved.]
01/07/2021 10:58:33 Task mnli_mismatched -- epoch 0 -- Dev ACC: 67.433
01/07/2021 10:59:03 [new test scores saved.]
01/07/2021 10:59:04 Task rte -- epoch 0 -- Dev ACC: 53.791
01/07/2021 10:59:15 [new test scores saved.]
01/07/2021 11:00:55 Task qqp -- epoch 0 -- Dev ACC: 74.509
01/07/2021 11:00:55 Task qqp -- epoch 0 -- Dev F1: 72.756
01/07/2021 11:17:13 [new test scores saved.]
01/07/2021 11:17:32 Task qnli -- epoch 0 -- Dev ACC: 70.848
01/07/2021 11:17:53 [new test scores saved.]
01/07/2021 11:17:54 Task mrpc -- epoch 0 -- Dev ACC: 68.382
01/07/2021 11:17:54 Task mrpc -- epoch 0 -- Dev F1: 81.168
01/07/2021 11:18:00 [new test scores saved.]
01/07/2021 11:18:01 Task sst -- epoch 0 -- Dev ACC: 82.110
01/07/2021 11:18:05 [new test scores saved.]
01/07/2021 11:18:07 Task cola -- epoch 0 -- Dev ACC: 34.132
01/07/2021 11:18:07 Task cola -- epoch 0 -- Dev MCC: 5.349
01/07/2021 11:18:08 [new test scores saved.]
01/07/2021 11:18:12 Task stsb -- epoch 0 -- Dev Pearson: 49.430
01/07/2021 11:18:12 Task stsb -- epoch 0 -- Dev Spearman: 49.175
01/07/2021 11:18:15 [new test scores saved.]
01/07/2021 11:18:19 At epoch 1
01/07/2021 11:18:24 Task [ 2] updates[ 6000] train loss[0.69663] remaining[0:12:10]
01/07/2021 11:19:27 Task [ 5] updates[ 6500] train loss[0.68469] remaining[0:11:20]
01/07/2021 11:20:30 Task [ 3] updates[ 7000] train loss[0.66978] remaining[0:10:17]
01/07/2021 11:21:31 Task [ 1] updates[ 7500] train loss[0.65797] remaining[0:09:09]
01/07/2021 11:22:34 Task [ 0] updates[ 8000] train loss[0.64798] remaining[0:08:07]
01/07/2021 11:23:37 Task [ 7] updates[ 8500] train loss[0.63656] remaining[0:07:06]
01/07/2021 11:24:39 Task [ 2] updates[ 9000] train loss[0.62556] remaining[0:06:04]
01/07/2021 11:25:42 Task [ 3] updates[ 9500] train loss[0.61703] remaining[0:05:02]
01/07/2021 11:26:44 Task [ 3] updates[ 10000] train loss[0.60709] remaining[0:03:58]
01/07/2021 11:27:46 Task [ 2] updates[ 10500] train loss[0.59820] remaining[0:02:56]
01/07/2021 11:28:49 Task [ 3] updates[ 11000] train loss[0.58894] remaining[0:01:54]
01/07/2021 11:29:53 Task [ 2] updates[ 11500] train loss[0.58033] remaining[0:00:51]
01/07/2021 11:31:14 Task mnli_matched -- epoch 1 -- Dev ACC: 71.849
01/07/2021 11:31:43 [new test scores saved.]
01/07/2021 11:32:12 Task mnli_mismatched -- epoch 1 -- Dev ACC: 72.386
01/07/2021 11:32:41 [new test scores saved.]
01/07/2021 11:32:43 Task rte -- epoch 1 -- Dev ACC: 57.401
01/07/2021 11:32:54 [new test scores saved.]
01/07/2021 11:34:33 Task qqp -- epoch 1 -- Dev ACC: 78.140
01/07/2021 11:34:33 Task qqp -- epoch 1 -- Dev F1: 75.432
01/07/2021 11:50:53 [new test scores saved.]
01/07/2021 11:51:11 Task qnli -- epoch 1 -- Dev ACC: 74.302
01/07/2021 11:51:32 [new test scores saved.]
01/07/2021 11:51:34 Task mrpc -- epoch 1 -- Dev ACC: 71.324
01/07/2021 11:51:34 Task mrpc -- epoch 1 -- Dev F1: 82.667
01/07/2021 11:51:39 [new test scores saved.]
01/07/2021 11:51:41 Task sst -- epoch 1 -- Dev ACC: 80.734
01/07/2021 11:51:45 [new test scores saved.]
01/07/2021 11:51:46 Task cola -- epoch 1 -- Dev ACC: 34.899
01/07/2021 11:51:46 Task cola -- epoch 1 -- Dev MCC: 5.534
01/07/2021 11:51:48 [new test scores saved.]
01/07/2021 11:51:51 Task stsb -- epoch 1 -- Dev Pearson: 72.493
01/07/2021 11:51:51 Task stsb -- epoch 1 -- Dev Spearman: 72.035
01/07/2021 11:51:54 [new test scores saved.]
01/07/2021 11:51:59 At epoch 2
01/07/2021 11:52:09 Task [ 2] updates[ 12000] train loss[0.57128] remaining[0:12:05]
01/07/2021 11:53:11 Task [ 2] updates[ 12500] train loss[0.56494] remaining[0:11:01]
01/07/2021 11:54:12 Task [ 2] updates[ 13000] train loss[0.55658] remaining[0:09:57]
01/07/2021 11:55:14 Task [ 5] updates[ 13500] train loss[0.54934] remaining[0:08:57]
01/07/2021 11:56:16 Task [ 2] updates[ 14000] train loss[0.54138] remaining[0:07:58]
01/07/2021 11:57:19 Task [ 2] updates[ 14500] train loss[0.53509] remaining[0:06:57]
01/07/2021 11:58:22 Task [ 3] updates[ 15000] train loss[0.52845] remaining[0:05:56]
01/07/2021 11:59:21 Task [ 2] updates[ 15500] train loss[0.52217] remaining[0:04:52]
01/08/2021 12:00:25 Task [ 2] updates[ 16000] train loss[0.51472] remaining[0:03:51]
01/08/2021 12:01:27 Task [ 2] updates[ 16500] train loss[0.50819] remaining[0:02:49]
01/08/2021 12:02:28 Task [ 0] updates[ 17000] train loss[0.50164] remaining[0:01:47]
01/08/2021 12:03:36 Task [ 2] updates[ 17500] train loss[0.49516] remaining[0:00:46]
01/08/2021 12:04:50 Task mnli_matched -- epoch 2 -- Dev ACC: 73.408
01/08/2021 12:05:18 [new test scores saved.]
01/08/2021 12:05:48 Task mnli_mismatched -- epoch 2 -- Dev ACC: 73.871
01/08/2021 12:06:17 [new test scores saved.]
01/08/2021 12:06:18 Task rte -- epoch 2 -- Dev ACC: 65.343
01/08/2021 12:06:29 [new test scores saved.]
01/08/2021 12:08:10 Task qqp -- epoch 2 -- Dev ACC: 78.865
01/08/2021 12:08:10 Task qqp -- epoch 2 -- Dev F1: 75.680
01/08/2021 12:24:31 [new test scores saved.]
01/08/2021 12:24:50 Task qnli -- epoch 2 -- Dev ACC: 76.605
01/08/2021 12:25:11 [new test scores saved.]
01/08/2021 12:25:12 Task mrpc -- epoch 2 -- Dev ACC: 75.245
01/08/2021 12:25:12 Task mrpc -- epoch 2 -- Dev F1: 84.292
01/08/2021 12:25:18 [new test scores saved.]
01/08/2021 12:25:20 Task sst -- epoch 2 -- Dev ACC: 83.142
01/08/2021 12:25:23 [new test scores saved.]
01/08/2021 12:25:25 Task cola -- epoch 2 -- Dev ACC: 57.718
01/08/2021 12:25:25 Task cola -- epoch 2 -- Dev MCC: 18.917
01/08/2021 12:25:27 [new test scores saved.]
01/08/2021 12:25:30 Task stsb -- epoch 2 -- Dev Pearson: 72.121
01/08/2021 12:25:30 Task stsb -- epoch 2 -- Dev Spearman: 72.481
01/08/2021 12:25:33 [new test scores saved.]
01/08/2021 12:25:38 At epoch 3
01/08/2021 12:25:54 Task [ 0] updates[ 18000] train loss[0.48917] remaining[0:12:03]
01/08/2021 12:26:56 Task [ 2] updates[ 18500] train loss[0.48397] remaining[0:11:01]
01/08/2021 12:27:58 Task [ 0] updates[ 19000] train loss[0.47865] remaining[0:09:57]
01/08/2021 12:29:00 Task [ 0] updates[ 19500] train loss[0.47312] remaining[0:08:56]
01/08/2021 12:30:00 Task [ 2] updates[ 20000] train loss[0.46735] remaining[0:07:51]
01/08/2021 12:31:02 Task [ 2] updates[ 20500] train loss[0.46221] remaining[0:06:50]
01/08/2021 12:32:04 Task [ 0] updates[ 21000] train loss[0.45695] remaining[0:05:49]
01/08/2021 12:33:05 Task [ 0] updates[ 21500] train loss[0.45231] remaining[0:04:46]
01/08/2021 12:34:06 Task [ 0] updates[ 22000] train loss[0.44687] remaining[0:03:45]
01/08/2021 12:35:09 Task [ 0] updates[ 22500] train loss[0.44192] remaining[0:02:43]
01/08/2021 12:36:11 Task [ 3] updates[ 23000] train loss[0.43720] remaining[0:01:42]
01/08/2021 12:37:13 Task [ 3] updates[ 23500] train loss[0.43240] remaining[0:00:40]
01/08/2021 12:38:23 Task mnli_matched -- epoch 3 -- Dev ACC: 73.082
01/08/2021 12:38:52 [new test scores saved.]
01/08/2021 12:39:21 Task mnli_mismatched -- epoch 3 -- Dev ACC: 73.607
01/08/2021 12:39:51 [new test scores saved.]
01/08/2021 12:39:52 Task rte -- epoch 3 -- Dev ACC: 64.982
01/08/2021 12:40:03 [new test scores saved.]
01/08/2021 12:41:44 Task qqp -- epoch 3 -- Dev ACC: 80.198
01/08/2021 12:41:44 Task qqp -- epoch 3 -- Dev F1: 76.413
01/08/2021 12:57:59 [new test scores saved.]
01/08/2021 12:58:18 Task qnli -- epoch 3 -- Dev ACC: 77.809
01/08/2021 12:58:39 [new test scores saved.]
01/08/2021 12:58:40 Task mrpc -- epoch 3 -- Dev ACC: 74.755
01/08/2021 12:58:40 Task mrpc -- epoch 3 -- Dev F1: 84.080
01/08/2021 12:58:46 [new test scores saved.]
01/08/2021 12:58:47 Task sst -- epoch 3 -- Dev ACC: 83.486
01/08/2021 12:58:51 [new test scores saved.]
01/08/2021 12:58:53 Task cola -- epoch 3 -- Dev ACC: 66.731
01/08/2021 12:58:53 Task cola -- epoch 3 -- Dev MCC: 24.132
01/08/2021 12:58:54 [new test scores saved.]
01/08/2021 12:58:58 Task stsb -- epoch 3 -- Dev Pearson: 66.823
01/08/2021 12:58:58 Task stsb -- epoch 3 -- Dev Spearman: 68.285
01/08/2021 12:59:01 [new test scores saved.]
01/08/2021 12:59:05 At epoch 4
01/08/2021 12:59:26 Task [ 2] updates[ 24000] train loss[0.42791] remaining[0:11:53]
01/08/2021 01:00:28 Task [ 3] updates[ 24500] train loss[0.42388] remaining[0:10:53]
01/08/2021 01:01:30 Task [ 2] updates[ 25000] train loss[0.41947] remaining[0:09:52]
01/08/2021 01:02:32 Task [ 0] updates[ 25500] train loss[0.41525] remaining[0:08:49]
01/08/2021 01:03:34 Task [ 0] updates[ 26000] train loss[0.41028] remaining[0:07:48]
01/08/2021 01:04:35 Task [ 2] updates[ 26500] train loss[0.40648] remaining[0:06:46]
01/08/2021 01:05:37 Task [ 3] updates[ 27000] train loss[0.40260] remaining[0:05:44]
01/08/2021 01:06:39 Task [ 2] updates[ 27500] train loss[0.39877] remaining[0:04:42]
01/08/2021 01:07:41 Task [ 1] updates[ 28000] train loss[0.39447] remaining[0:03:40]
01/08/2021 01:08:43 Task [ 0] updates[ 28500] train loss[0.39069] remaining[0:02:38]
01/08/2021 01:09:44 Task [ 2] updates[ 29000] train loss[0.38660] remaining[0:01:36]
01/08/2021 01:10:46 Task [ 2] updates[ 29500] train loss[0.38265] remaining[0:00:35]
01/08/2021 01:11:49 Task mnli_matched -- epoch 4 -- Dev ACC: 72.583
01/08/2021 01:12:18 [new test scores saved.]
01/08/2021 01:12:48 Task mnli_mismatched -- epoch 4 -- Dev ACC: 73.220
01/08/2021 01:13:17 [new test scores saved.]
01/08/2021 01:13:18 Task rte -- epoch 4 -- Dev ACC: 66.787
01/08/2021 01:13:30 [new test scores saved.]
01/08/2021 01:15:10 Task qqp -- epoch 4 -- Dev ACC: 80.361
01/08/2021 01:15:10 Task qqp -- epoch 4 -- Dev F1: 76.256
01/08/2021 01:31:30 [new test scores saved.]
01/08/2021 01:31:49 Task qnli -- epoch 4 -- Dev ACC: 77.756
01/08/2021 01:32:10 [new test scores saved.]
01/08/2021 01:32:11 Task mrpc -- epoch 4 -- Dev ACC: 76.471
01/08/2021 01:32:11 Task mrpc -- epoch 4 -- Dev F1: 84.416
01/08/2021 01:32:16 [new test scores saved.]
01/08/2021 01:32:18 Task sst -- epoch 4 -- Dev ACC: 83.716
01/08/2021 01:32:22 [new test scores saved.]
01/08/2021 01:32:24 Task cola -- epoch 4 -- Dev ACC: 67.977
01/08/2021 01:32:24 Task cola -- epoch 4 -- Dev MCC: 24.330
01/08/2021 01:32:25 [new test scores saved.]
01/08/2021 01:32:29 Task stsb -- epoch 4 -- Dev Pearson: 64.796
01/08/2021 01:32:29 Task stsb -- epoch 4 -- Dev Spearman: 67.650
01/08/2021 01:32:32 [new test scores saved.]
01/08/2021 01:32:36 At epoch 5
01/08/2021 01:33:03 Task [ 0] updates[ 30000] train loss[0.37922] remaining[0:11:50]
01/08/2021 01:34:05 Task [ 2] updates[ 30500] train loss[0.37590] remaining[0:10:51]
01/08/2021 01:35:06 Task [ 2] updates[ 31000] train loss[0.37197] remaining[0:09:46]
01/08/2021 01:36:08 Task [ 2] updates[ 31500] train loss[0.36867] remaining[0:08:45]
01/08/2021 01:37:09 Task [ 2] updates[ 32000] train loss[0.36482] remaining[0:07:41]
01/08/2021 01:38:11 Task [ 0] updates[ 32500] train loss[0.36148] remaining[0:06:39]
01/08/2021 01:39:13 Task [ 2] updates[ 33000] train loss[0.35808] remaining[0:05:38]
01/08/2021 01:40:14 Task [ 0] updates[ 33500] train loss[0.35484] remaining[0:04:36]
01/08/2021 01:41:15 Task [ 3] updates[ 34000] train loss[0.35143] remaining[0:03:34]
01/08/2021 01:42:17 Task [ 2] updates[ 34500] train loss[0.34847] remaining[0:02:32]
01/08/2021 01:43:18 Task [ 2] updates[ 35000] train loss[0.34530] remaining[0:01:31]
01/08/2021 01:44:19 Task [ 2] updates[ 35500] train loss[0.34200] remaining[0:00:29]
01/08/2021 01:45:17 Task mnli_matched -- epoch 5 -- Dev ACC: 72.939
01/08/2021 01:45:46 [new test scores saved.]
01/08/2021 01:46:15 Task mnli_mismatched -- epoch 5 -- Dev ACC: 73.200
01/08/2021 01:46:44 [new test scores saved.]
01/08/2021 01:46:46 Task rte -- epoch 5 -- Dev ACC: 65.343
01/08/2021 01:46:57 [new test scores saved.]
01/08/2021 01:48:38 Task qqp -- epoch 5 -- Dev ACC: 81.036
01/08/2021 01:48:38 Task qqp -- epoch 5 -- Dev F1: 76.183
01/08/2021 02:04:55 [new test scores saved.]
01/08/2021 02:05:14 Task qnli -- epoch 5 -- Dev ACC: 78.262
01/08/2021 02:05:35 [new test scores saved.]
01/08/2021 02:05:36 Task mrpc -- epoch 5 -- Dev ACC: 78.431
01/08/2021 02:05:36 Task mrpc -- epoch 5 -- Dev F1: 85.668
01/08/2021 02:05:42 [new test scores saved.]
01/08/2021 02:05:43 Task sst -- epoch 5 -- Dev ACC: 83.716
01/08/2021 02:05:47 [new test scores saved.]
01/08/2021 02:05:49 Task cola -- epoch 5 -- Dev ACC: 68.456
01/08/2021 02:05:49 Task cola -- epoch 5 -- Dev MCC: 20.206
01/08/2021 02:05:51 [new test scores saved.]
01/08/2021 02:05:54 Task stsb -- epoch 5 -- Dev Pearson: 64.298
01/08/2021 02:05:54 Task stsb -- epoch 5 -- Dev Spearman: 67.443
01/08/2021 02:05:57 [new test scores saved.]
01/08/2021 02:06:01 At epoch 6
01/08/2021 02:06:33 Task [ 3] updates[ 36000] train loss[0.33901] remaining[0:11:46]
01/08/2021 02:07:32 Task [ 0] updates[ 36500] train loss[0.33633] remaining[0:10:22]
01/08/2021 02:08:33 Task [ 0] updates[ 37000] train loss[0.33330] remaining[0:09:27]
01/08/2021 02:09:35 Task [ 3] updates[ 37500] train loss[0.33045] remaining[0:08:29]
01/08/2021 02:10:37 Task [ 2] updates[ 38000] train loss[0.32726] remaining[0:07:31]
01/08/2021 02:11:39 Task [ 0] updates[ 38500] train loss[0.32454] remaining[0:06:31]
01/08/2021 02:12:40 Task [ 5] updates[ 39000] train loss[0.32182] remaining[0:05:30]
01/08/2021 02:13:41 Task [ 3] updates[ 39500] train loss[0.31921] remaining[0:04:29]
01/08/2021 02:14:43 Task [ 2] updates[ 40000] train loss[0.31634] remaining[0:03:28]
01/08/2021 02:15:44 Task [ 2] updates[ 40500] train loss[0.31384] remaining[0:02:26]
01/08/2021 02:16:46 Task [ 0] updates[ 41000] train loss[0.31114] remaining[0:01:25]
01/08/2021 02:17:47 Task [ 2] updates[ 41500] train loss[0.30852] remaining[0:00:24]
01/08/2021 02:18:39 Task mnli_matched -- epoch 6 -- Dev ACC: 72.858
01/08/2021 02:19:08 [new test scores saved.]
01/08/2021 02:19:37 Task mnli_mismatched -- epoch 6 -- Dev ACC: 73.474
01/08/2021 02:20:06 [new test scores saved.]
01/08/2021 02:20:08 Task rte -- epoch 6 -- Dev ACC: 65.704
01/08/2021 02:20:19 [new test scores saved.]
01/08/2021 02:21:59 Task qqp -- epoch 6 -- Dev ACC: 80.972
01/08/2021 02:21:59 Task qqp -- epoch 6 -- Dev F1: 76.346
01/08/2021 02:38:13 [new test scores saved.]
01/08/2021 02:38:31 Task qnli -- epoch 6 -- Dev ACC: 78.507
01/08/2021 02:38:52 [new test scores saved.]
01/08/2021 02:38:54 Task mrpc -- epoch 6 -- Dev ACC: 77.696
01/08/2021 02:38:54 Task mrpc -- epoch 6 -- Dev F1: 85.057
01/08/2021 02:38:59 [new test scores saved.]
01/08/2021 02:39:01 Task sst -- epoch 6 -- Dev ACC: 84.748
01/08/2021 02:39:05 [new test scores saved.]
01/08/2021 02:39:06 Task cola -- epoch 6 -- Dev ACC: 68.936
01/08/2021 02:39:06 Task cola -- epoch 6 -- Dev MCC: 23.009
01/08/2021 02:39:08 [new test scores saved.]
01/08/2021 02:39:11 Task stsb -- epoch 6 -- Dev Pearson: 63.619
01/08/2021 02:39:11 Task stsb -- epoch 6 -- Dev Spearman: 66.512
01/08/2021 02:39:14 [new test scores saved.]
01/08/2021 02:39:19 At epoch 7
01/08/2021 02:39:55 Task [ 0] updates[ 42000] train loss[0.30615] remaining[0:11:30]
01/08/2021 02:40:57 Task [ 0] updates[ 42500] train loss[0.30372] remaining[0:10:32]
01/08/2021 02:41:58 Task [ 2] updates[ 43000] train loss[0.30121] remaining[0:09:31]
01/08/2021 02:42:59 Task [ 2] updates[ 43500] train loss[0.29880] remaining[0:08:27]
01/08/2021 02:43:59 Task [ 2] updates[ 44000] train loss[0.29634] remaining[0:07:25]
01/08/2021 02:46:31 Task [ 0] updates[ 44500] train loss[0.29391] remaining[0:08:07]
01/08/2021 02:47:30 Task [ 6] updates[ 45000] train loss[0.29171] remaining[0:06:35]
01/08/2021 02:48:28 Task [ 0] updates[ 45500] train loss[0.28962] remaining[0:05:11]
01/08/2021 02:49:25 Task [ 2] updates[ 46000] train loss[0.28742] remaining[0:03:53]
01/08/2021 02:50:24 Task [ 3] updates[ 46500] train loss[0.28529] remaining[0:02:40]
01/08/2021 02:51:22 Task [ 0] updates[ 47000] train loss[0.28301] remaining[0:01:29]
01/08/2021 02:52:21 Task [ 0] updates[ 47500] train loss[0.28092] remaining[0:00:21]
01/08/2021 02:53:08 Task mnli_matched -- epoch 7 -- Dev ACC: 72.756
01/08/2021 02:53:37 [new test scores saved.]
01/08/2021 02:54:07 Task mnli_mismatched -- epoch 7 -- Dev ACC: 73.342
01/08/2021 02:54:36 [new test scores saved.]
01/08/2021 02:54:37 Task rte -- epoch 7 -- Dev ACC: 65.704
01/08/2021 02:54:49 [new test scores saved.]
01/08/2021 02:56:30 Task qqp -- epoch 7 -- Dev ACC: 81.365
01/08/2021 02:56:30 Task qqp -- epoch 7 -- Dev F1: 76.311
01/08/2021 03:12:56 [new test scores saved.]
01/08/2021 03:13:15 Task qnli -- epoch 7 -- Dev ACC: 78.193
01/08/2021 03:13:37 [new test scores saved.]
01/08/2021 03:13:38 Task mrpc -- epoch 7 -- Dev ACC: 78.431
01/08/2021 03:13:38 Task mrpc -- epoch 7 -- Dev F1: 85.135
01/08/2021 03:13:43 [new test scores saved.]
01/08/2021 03:13:45 Task sst -- epoch 7 -- Dev ACC: 85.206
01/08/2021 03:13:49 [new test scores saved.]
01/08/2021 03:13:51 Task cola -- epoch 7 -- Dev ACC: 68.744
01/08/2021 03:13:51 Task cola -- epoch 7 -- Dev MCC: 21.775
01/08/2021 03:13:52 [new test scores saved.]
01/08/2021 03:13:56 Task stsb -- epoch 7 -- Dev Pearson: 63.606
01/08/2021 03:13:56 Task stsb -- epoch 7 -- Dev Spearman: 66.412
01/08/2021 03:13:58 [new test scores saved.]
01/08/2021 03:14:03 At epoch 8
01/08/2021 03:14:44 Task [ 2] updates[ 48000] train loss[0.27878] remaining[0:11:09]
01/08/2021 03:15:44 Task [ 0] updates[ 48500] train loss[0.27677] remaining[0:10:13]
01/08/2021 03:16:43 Task [ 3] updates[ 49000] train loss[0.27466] remaining[0:09:07]
01/08/2021 03:17:36 Task [ 0] updates[ 49500] train loss[0.27268] remaining[0:07:53]
01/08/2021 03:18:33 Task [ 2] updates[ 50000] train loss[0.27045] remaining[0:06:56]
01/08/2021 03:19:33 Task [ 2] updates[ 50500] train loss[0.26846] remaining[0:06:00]
01/08/2021 03:20:32 Task [ 0] updates[ 51000] train loss[0.26651] remaining[0:05:04]
01/08/2021 03:21:31 Task [ 3] updates[ 51500] train loss[0.26470] remaining[0:04:06]
01/08/2021 03:22:30 Task [ 2] updates[ 52000] train loss[0.26271] remaining[0:03:08]
01/08/2021 03:23:30 Task [ 2] updates[ 52500] train loss[0.26091] remaining[0:02:10]
01/08/2021 03:24:29 Task [ 0] updates[ 53000] train loss[0.25906] remaining[0:01:11]
01/08/2021 03:25:29 Task [ 2] updates[ 53500] train loss[0.25711] remaining[0:00:13]
01/08/2021 03:26:11 Task mnli_matched -- epoch 8 -- Dev ACC: 72.440
01/08/2021 03:26:40 [new test scores saved.]
01/08/2021 03:27:10 Task mnli_mismatched -- epoch 8 -- Dev ACC: 73.047
01/08/2021 03:27:39 [new test scores saved.]
01/08/2021 03:27:41 Task rte -- epoch 8 -- Dev ACC: 64.621
01/08/2021 03:27:52 [new test scores saved.]
01/08/2021 03:29:33 Task qqp -- epoch 8 -- Dev ACC: 81.373
01/08/2021 03:29:33 Task qqp -- epoch 8 -- Dev F1: 76.342
01/08/2021 03:45:56 [new test scores saved.]
01/08/2021 03:46:15 Task qnli -- epoch 8 -- Dev ACC: 78.350
01/08/2021 03:46:36 [new test scores saved.]
01/08/2021 03:46:37 Task mrpc -- epoch 8 -- Dev ACC: 77.206
01/08/2021 03:46:37 Task mrpc -- epoch 8 -- Dev F1: 83.938
01/08/2021 03:46:43 [new test scores saved.]
01/08/2021 03:46:45 Task sst -- epoch 8 -- Dev ACC: 82.569
01/08/2021 03:46:48 [new test scores saved.]
01/08/2021 03:46:50 Task cola -- epoch 8 -- Dev ACC: 70.182
01/08/2021 03:46:50 Task cola -- epoch 8 -- Dev MCC: 23.010
01/08/2021 03:46:52 [new test scores saved.]
01/08/2021 03:46:55 Task stsb -- epoch 8 -- Dev Pearson: 63.758
01/08/2021 03:46:55 Task stsb -- epoch 8 -- Dev Spearman: 66.954
01/08/2021 03:46:58 [new test scores saved.]
01/08/2021 03:47:02 At epoch 9
01/08/2021 03:47:48 Task [ 3] updates[ 54000] train loss[0.25534] remaining[0:10:54]
01/08/2021 03:48:48 Task [ 0] updates[ 54500] train loss[0.25376] remaining[0:10:01]
01/08/2021 03:49:47 Task [ 2] updates[ 55000] train loss[0.25207] remaining[0:09:04]
01/08/2021 03:50:48 Task [ 0] updates[ 55500] train loss[0.25043] remaining[0:08:06]
01/08/2021 03:51:49 Task [ 0] updates[ 56000] train loss[0.24865] remaining[0:07:08]
01/08/2021 03:52:49 Task [ 5] updates[ 56500] train loss[0.24688] remaining[0:06:08]
01/08/2021 03:53:49 Task [ 2] updates[ 57000] train loss[0.24533] remaining[0:05:08]
01/08/2021 03:54:50 Task [ 2] updates[ 57500] train loss[0.24385] remaining[0:04:08]
01/08/2021 03:55:49 Task [ 2] updates[ 58000] train loss[0.24220] remaining[0:03:08]
01/08/2021 03:56:47 Task [ 2] updates[ 58500] train loss[0.24069] remaining[0:02:08]
01/08/2021 03:58:36 Task [ 2] updates[ 59000] train loss[0.23903] remaining[0:01:13]
01/08/2021 04:02:38 Task [ 2] updates[ 59500] train loss[0.23753] remaining[0:00:11]
01/08/2021 04:06:30 Task mnli_matched -- epoch 9 -- Dev ACC: 72.787
01/08/2021 04:09:50 [new test scores saved.]
01/08/2021 04:13:10 Task mnli_mismatched -- epoch 9 -- Dev ACC: 73.403
01/08/2021 04:16:32 [new test scores saved.]
01/08/2021 04:16:37 Task rte -- epoch 9 -- Dev ACC: 65.343
01/08/2021 04:17:35 [new test scores saved.]
01/08/2021 04:30:44 Task qqp -- epoch 9 -- Dev ACC: 81.281
01/08/2021 04:30:44 Task qqp -- epoch 9 -- Dev F1: 76.509
01/08/2021 05:00:47 [new test scores saved.]
01/08/2021 05:01:06 Task qnli -- epoch 9 -- Dev ACC: 78.507
01/08/2021 05:01:27 [new test scores saved.]
01/08/2021 05:01:28 Task mrpc -- epoch 9 -- Dev ACC: 77.451
01/08/2021 05:01:28 Task mrpc -- epoch 9 -- Dev F1: 84.459
01/08/2021 05:01:34 [new test scores saved.]
01/08/2021 05:01:35 Task sst -- epoch 9 -- Dev ACC: 83.486
01/08/2021 05:01:39 [new test scores saved.]
01/08/2021 05:01:41 Task cola -- epoch 9 -- Dev ACC: 69.607
01/08/2021 05:01:41 Task cola -- epoch 9 -- Dev MCC: 22.858
01/08/2021 05:01:43 [new test scores saved.]
01/08/2021 05:01:46 Task stsb -- epoch 9 -- Dev Pearson: 64.154
01/08/2021 05:01:46 Task stsb -- epoch 9 -- Dev Spearman: 66.894
01/08/2021 05:01:49 [new test scores saved.]