-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
140 lines (113 loc) · 4.55 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#!/usr/bin/env python3
import pyrtools as pt
import scipy
import numpy as np
from scipy import fft as sp_fft
def amplitude_spectra(image):
"""Compute amplitude spectra of an image.
We compute the 2d Fourier transform of an image, take its magnitude, and
then radially average it. This averages across orientations and also
discretizes the frequency. We also drop a disk in frequency space to
exclude the highest frequencies (that is, those where we don't have
cardinal directions).
Parameters
----------
image : np.ndarray
The 2d array containing the image
Returns
-------
spectra : np.ndarray
The 1d array containing the amplitude spectra
Notes
-----
See
https://scipy-lectures.org/advanced/image_processing/auto_examples/plot_radial_mean.html
for how we compute the radial mean. Note the tutorial excludes label=0, but
we include it (corresponds to the DC term).
"""
frq = sp_fft.fftshift(sp_fft.fft2(image))
# following
# https://scipy-lectures.org/advanced/image_processing/auto_examples/plot_radial_mean.html.
# Note the tutorial excludes label=0, but we include it (corresponds to the
# DC term).
rbin = pt.synthetic_images.polar_radius(frq.shape).astype(np.int)
# we ignore all frequencies outside a disk centered at the origin that
# reaches to the first edge (in frequency space). This means we get all
# frequencies that we can measure in each orientation (you can't get any
# frequencies in the cardinal directions beyond this disk)
frq_disk = pt.synthetic_images.polar_radius(frq.shape)
frq_thresh = min(frq.shape)//2
frq_disk = frq_disk < frq_thresh
rbin[~frq_disk] = rbin.max()+1
spectra = scipy.ndimage.mean(np.abs(frq), labels=rbin,
index=np.arange(frq_thresh-1))
return spectra
def _construct_impulse_pyr(size, height, order, is_complex=False):
"""Construct pyramid with impulse in each band."""
empty_image = np.zeros((size, size))
pyr = pt.pyramids.SteerablePyramidFreq(empty_image, height=height, order=order,
is_complex=is_complex)
# Put an impulse into the middle of each band
for k, v in pyr.pyr_size.items():
mid = (v[0]//2, v[1]//2)
pyr.pyr_coeffs[k][mid] = 1
return pyr
def get_steerpyr_filters(size, height='auto', order=1, is_complex=False):
"""Construct and return steerpyr filters.
We do this by getting the impulse response of the SteerablePyramidFreq and
then reconstructing each band.
Parameters
----------
size : int
Size of the image to build the filter on.
height : 'auto' or int, optional
Number of scales to build. If 'auto', calculate based on size.
order : int
Order of steerable pyramid filters.
is_complex : bool
Whether the coefficients are complex- or real-valued.
Returns
-------
filters: dict
Dictionary of filters
"""
pyr = _construct_impulse_pyr(size, height, order, is_complex)
# And take a look at the reconstruction of each band:
filters = {}
for k in pyr.pyr_coeffs.keys():
if isinstance(k, tuple):
filters[k] = pyr.recon_pyr(*k)
for k in ['residual_highpass', 'residual_lowpass']:
filters[k] = pyr.recon_pyr(k)
return filters
def get_steerpyr_freq_filters(size, height='auto', order=1, is_complex=False):
"""Construct and return steerpyr filters in frequency domain.
We do this by getting the impulse response of the SteerablePyramidFreq and
then reconstructing each band.
Parameters
----------
size : int
Size of the image to build the filter on.
height : 'auto' or int, optional
Number of scales to build. If 'auto', calculate based on size.
order : int
Order of steerable pyramid filters.
is_complex : bool
Whether the coefficients are complex- or real-valued.
Returns
-------
filters: dict
Dictionary of frequency domain filters
"""
pyr = _construct_impulse_pyr(size, height, order, is_complex)
filters = {}
for k in pyr.pyr_coeffs.keys():
if isinstance(k, tuple):
basisFn = pyr.recon_pyr(*k)
basisFmag = np.fft.fftshift(np.abs(np.fft.fft2(basisFn, (size, size))))
filters[k] = basisFmag
for k in ['residual_highpass', 'residual_lowpass']:
basisFn = pyr.recon_pyr(k)
basisFmag = np.fft.fftshift(np.abs(np.fft.fft2(basisFn, (size, size))))
filters[k] = basisFmag
return filters