From 0a48e9c6e2578d1026eefee094327062730e33ec Mon Sep 17 00:00:00 2001 From: Benedikt Obermayer Date: Tue, 29 Oct 2019 11:19:30 +0100 Subject: [PATCH] fix README --- README.rst | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/README.rst b/README.rst index 2dd146c..b28a639 100644 --- a/README.rst +++ b/README.rst @@ -71,16 +71,16 @@ and then point your browser to http://0.0.0.0:8050/. Preparing Your Data ------------------- -Data sets are provided as HDF5 files (`anndata `_ objects) that store gene expression (sparse CSR matrix) and meta data with very fast read access. +Data sets are provided as HDF5 files (`anndata `__ objects) that store gene expression (sparse CSR matrix) and meta data with very fast read access. For the input you can either specify one HDF5 file or a directory containing multiple such files. -You can use `scanpy `_ to create this HDF5 file directly or use the ``scelvis convert`` command for converting your single-cell pipeline output. +You can use `scanpy `__ to create this HDF5 file directly or use the ``scelvis convert`` command for converting your single-cell pipeline output. HDF5 Input ---------- -for HDF5 input, you can do your analysis with `scanpy `_ to create an anndata object ``ad``. SCelVis will use embedding coordinates from ``ad.obsm``, cell annotation from ``ad.obs`` and expression data directly from ``ad.X`` (this should contain normalized and log-transformed expression values for all genes). If present, information about the dataset will be extracted from strings stored in ``ad.uns['about_title']``, ``ad.uns['about_short_title']`` and ``ad.uns['about_readme']`` (assumed to be Markdown). Information about marker genes will be taken either from the ``rank_genes_groups`` slot in ``ad.uns`` or from entries starting with ``marker_`` in ``ad.uns``: entries called ``marker_gene`` (required!), ``marker_cluster``, ``marker_padj``, ``marker_LFC`` will create a table with the columns ``gene``, ``cluster``, ``padj``, and ``LFC``. +for HDF5 input, you can do your analysis with `scanpy `__ to create an anndata object ``ad``. SCelVis will use embedding coordinates from ``ad.obsm``, cell annotation from ``ad.obs`` and expression data directly from ``ad.X`` (this should contain normalized and log-transformed expression values for all genes). If present, information about the dataset will be extracted from strings stored in ``ad.uns['about_title']``, ``ad.uns['about_short_title']`` and ``ad.uns['about_readme']`` (assumed to be Markdown). Information about marker genes will be taken either from the ``rank_genes_groups`` slot in ``ad.uns`` or from entries starting with ``marker_`` in ``ad.uns``: entries called ``marker_gene`` (required!), ``marker_cluster``, ``marker_padj``, ``marker_LFC`` will create a table with the columns ``gene``, ``cluster``, ``padj``, and ``LFC``. If you prepared your data with ``Seurat`` (v2), you can use ``Convert(from = sobj, to = "anndata", filename = "data.h5ad")`` to get an HDF5 file. @@ -134,7 +134,7 @@ in ``examples/dummy_raw.zip`` and ``examples/dummy_about.md`` we provide raw dat Loom Input ---------- -for `loompy `_ or `loomR `_ input, you can convert your data like this: +for `loompy `__ or `loomR `__ input, you can convert your data like this: .. code-block:: shell @@ -192,7 +192,7 @@ Data sources can be: - paths, e.g., ``relative/paths`` or ``/absolute/paths`` or ``file://url/paths`` - SFTP URLs, e.g., ``sftp://user:password@host/path/to/data`` -- FTP URLs, e.g., ``ftp://user:password@host/path/to/data`` (sadly encryption is not supported by the underlying library `PyFilesystem2 `_. +- FTP URLs, e.g., ``ftp://user:password@host/path/to/data`` (sadly encryption is not supported by the underlying library `PyFilesystem2 `__. - iRODS URLS, e.g., ``irods://user:password@host/zoneName/path/to/data`` - Enable SSL via ``irods+ssl`` - Switch to PAM authentication with ``irods+pam`` (you can combine this with ``+ssl`` in any order) @@ -230,7 +230,7 @@ The prerequisites are: - Python 3, either - system-wide installation with ``virtualenv``, or - - installed with `Conda `_. + - installed with `Conda `__. For ``virtualenv``, first create a virtual environment and activate it. @@ -265,7 +265,7 @@ Afterwards, you can run the visualization web server as follows: Releasing Packages ------------------ -For the `PyPi package `_: +For the `PyPi package `__: .. code-block:: shell @@ -273,5 +273,5 @@ For the `PyPi package `_: $ twine upload --repository-url https://test.pypi.org/legacy/ dist/scelvis-*.tar.gz $ twine upload dist/scelvis-*.tar.gz -For the Bioconda package, see `the great documentation `_. +For the Bioconda package, see `the great documentation `__. The Docker image will automatically be created as a BioContainer when the Bioconda package is built.