forked from sheoyon-jhin/CONTIME
-
Notifications
You must be signed in to change notification settings - Fork 0
/
contime.py
382 lines (291 loc) · 13.2 KB
/
contime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
import math
import torch
import torchcde
import datasets
import sklearn.model_selection
import torchdiffeq
from random import SystemRandom
import random
import numpy as np
from parse import parse_args
import pathlib
import os
import time
import tqdm
import contime_dataset
import control_tower
import warnings
warnings.filterwarnings(action='ignore')
from tslearn.metrics import dtw, dtw_path
args = parse_args()
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
def RSE(pred, true):
return np.sqrt(np.sum((true - pred) ** 2)) / np.sqrt(np.sum((true - true.mean()) ** 2))
def CORR(pred, true):
u = ((true - true.mean(0)) * (pred - pred.mean(0))).sum(0)
d = np.sqrt(((true - true.mean(0)) ** 2 * (pred - pred.mean(0)) ** 2).sum(0))
d += 1e-12
return 0.01*(u / d).mean(-1)
def MAE(pred, true):
return np.mean(np.abs(pred - true))
def MSE(pred, true):
return np.mean((pred - true) ** 2)
def RMSE(pred, true):
return np.sqrt(MSE(pred, true))
def MAPE(pred, true):
return np.mean(np.abs((pred - true) / true))
def MSPE(pred, true):
return np.mean(np.square((pred - true) / true))
def metric(pred, true):
mae = MAE(pred, true)
mse = MSE(pred, true)
rmse = RMSE(pred, true)
mape = MAPE(pred, true)
mspe = MSPE(pred, true)
rse = RSE(pred, true)
corr = CORR(pred, true)
return mae, mse, rmse, mape, mspe, rse, corr
def evaluate(epoch,model,optimizer,dataloader,model_name,times,loss_fn,NLL_fn):
model.eval()
total_dataset_size = 0
total_mse= []
total_dtw = []
total_dt = []
total_loss = []
total_tdi=[]
for batch in dataloader:
loss_tdi_f=[]
loss_dtw_f = []
batch_coeffs,batch_x, batch_y = batch
pred_y,dydt = model(args,batch_x,batch_coeffs,times)
mse = loss_fn(pred_y,batch_y)
batch_y_epi = batch_y[:,1:,:]
batch_y_pre = batch_y[:,:-1,:]
batch_y_diff = batch_y_epi - batch_y_pre
dt_loss = loss_fn(dydt,batch_y_diff)
batch_size = batch_y.shape[0]
features = batch_y.shape[-1]
loss = (args.alpha * mse) + (args.beta * dt_loss)
for f in range(features):
loss_tdi_ = 0
loss_dtw_ = 0
for k in range(batch_size):
target_k_cpu = batch_y[k,:,f].view(-1).detach().cpu().numpy()
output_k_cpu = pred_y[k,:,f].view(-1).detach().cpu().numpy()
path, sim = dtw_path(target_k_cpu, output_k_cpu)
loss_dtw_ += sim
Dist = 0
for i,j in path:
Dist += (i-j)*(i-j)
loss_tdi_ += Dist / (args.pred_len*args.pred_len)
loss_tdi_f.append(loss_tdi_/batch_size)
loss_dtw_f.append(loss_dtw_/batch_size)
loss_dtw = np.average(loss_dtw_f)
loss_tdi = np.average(loss_tdi_f)
b_size = batch_y.size(0)
total_dataset_size +=b_size
total_mse.append(mse.item())
total_dt.append(dt_loss.item())
total_dtw.append(loss_dtw)
total_tdi.append(loss_tdi)
total_loss.append(loss.item())
total_mse =np.average(total_mse)
total_dtw = np.average(total_dtw)
total_dt = np.average(total_dt)
total_loss = np.average(total_loss)
total_tdi = np.average(total_tdi)
return total_mse,total_dtw,total_dt,total_tdi,total_loss
def load_model(args,model_path,visualize_version='test'):
device="cuda"
model_name = args.model
train_dataloader, val_dataloader,test_dataloader,input_channels ,output_channels= contime_dataset.get_dataset(args,device,visualization=True)
model = control_tower.Model_selection_part(args,input_channels=input_channels,output_channels=output_channels, device=device )
times = torch.Tensor(np.arange(args.seq_len))
model=model.to(device)
times=times.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay = args.weight_decay)
loss_fn = torch.nn.MSELoss()
NLL_fn = torch.nn.NLLLoss()
ckpt_file = model_path
checkpoint = torch.load(ckpt_file)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
breaking=False
if device != 'cpu':
torch.cuda.reset_max_memory_allocated(device)
baseline_memory = torch.cuda.memory_allocated(device)
else:
baseline_memory = None
for epoch in range(1):
if breaking:
break
model.eval()
total_dataset_size = 0
full_pred_y = torch.Tensor()
full_true_y =torch.Tensor()
full_x = torch.Tensor()
loss_dtw = []
loss_tdi = []
preds = []
trues = []
if visualize_version=='train':
dataloader = train_dataloader
elif visualize_version=='val':
dataloader = val_dataloader
else:
dataloader = test_dataloader
for batch in dataloader:
loss_tdi_f = []
loss_dtw_f =[]
batch_coeffs,batch_x, batch_y = batch
if breaking:
break
pred_y,pred_prob = model(args,batch_x,batch_coeffs,times)
b_size = batch_y.size(0)
mse = loss_fn(pred_y,batch_y)
pred = pred_y.detach().cpu().numpy()
true = batch_y.detach().cpu().numpy()
batch_y_epi = batch_y[:,1:,:]
batch_y_pre = batch_y[:,:-1,:]
batch_y_diff = batch_y_epi - batch_y_pre
true_prob = (batch_y_diff>0).to(batch_y.dtype)
pred_prob = pred_prob.to(batch_y.dtype)
batch_size = batch_y.shape[0]
features = batch_y.shape[-1]
for f in range(features):
loss_tdi_ = 0
loss_dtw_ = 0
for k in range(batch_size):
target_k_cpu = batch_y[k,:,f].view(-1).detach().cpu().numpy()
output_k_cpu = pred_y[k,:,f].view(-1).detach().cpu().numpy()
path, sim = dtw_path(target_k_cpu, output_k_cpu)
loss_dtw_ += sim
Dist = 0
for i,j in path:
Dist += (i-j)*(i-j)
loss_tdi_ += Dist / (args.pred_len*args.pred_len)
loss_tdi_f.append(loss_tdi_/batch_size)
loss_dtw_f.append(loss_dtw_/batch_size)
loss_dtw = np.average(loss_dtw_f)
loss_tdi = np.average(loss_tdi_f)
preds.append(pred)
trues.append(true)
full_pred_y=torch.cat([full_pred_y,pred_y.squeeze(-1).cpu()],dim=0)
full_true_y=torch.cat([full_true_y,batch_y.squeeze(-1).cpu()],dim=0)
full_x=torch.cat([full_x,batch_x.cpu()],dim=0)
optimizer.zero_grad()
total_dataset_size += b_size
preds = np.array(preds)
trues = np.array(trues)
mae, mse, rmse, mape, mspe, rse, corr = metric(preds, trues)
return mae, mse, rmse, mape, mspe, rse, corr, np.average(loss_tdi),np.average(loss_dtw)
def train(args,model,times,train_dataloader, val_dataloader,test_dataloader,optimizer,loss_fn,NLL_fn,device):
if device != 'cpu':
torch.cuda.reset_max_memory_allocated(device)
baseline_memory = torch.cuda.memory_allocated(device)
else:
baseline_memory = None
num_epochs=args.epoch
breaking=False
tqdm_range = tqdm.tqdm(range(num_epochs))
tqdm_range.write('Starting training for model:\n\n' + str(model) + '\n\n')
best_loss = np.inf
for epoch in tqdm_range:
if breaking:
break
model.train()
start_time= time.time()
total_dataset_size = 0
train_mse=[]
train_dt = []
train_dtw = []
train_tdi = []
best_train_mse = np.inf
loss_dtw = []
loss_tdi = []
for batch in train_dataloader:
loss_tdi_f=[]
loss_dtw_f =[]
if breaking:
break
batch_coeffs,batch_x, batch_y = batch
pred_y,dydt = model(args,batch_x,batch_coeffs,times)
mse = loss_fn(pred_y,batch_y)
batch_y_epi = batch_y[:,1:,:]
batch_y_pre = batch_y[:,:-1,:]
batch_y_diff = batch_y_epi - batch_y_pre
loss_dtw, loss_tdi = 0,0
batch_size = batch_y.shape[0]
features = batch_y.shape[-1]
for f in range(features):
loss_tdi_ = 0
loss_dtw_ = 0
for k in range(batch_size):
target_k_cpu = batch_y[k,:,f].view(-1).detach().cpu().numpy()
output_k_cpu = pred_y[k,:,f].view(-1).detach().cpu().numpy()
path, sim = dtw_path(target_k_cpu, output_k_cpu)
loss_dtw_ += sim
Dist = 0
for i,j in path:
Dist += (i-j)*(i-j)
loss_tdi_ += Dist / (args.pred_len*args.pred_len)
loss_tdi_f.append(loss_tdi_/batch_size)
loss_dtw_f.append(loss_dtw_/batch_size)
loss_dtw = np.average(loss_dtw_f)
loss_tdi = np.average(loss_tdi_f)
dt_loss = loss_fn(dydt,batch_y_diff)
if np.isnan(mse.item()):
breaking = True
loss = (args.alpha * mse) + (args.beta * dt_loss)
loss.backward()
optimizer.step()
optimizer.zero_grad()
b_size = batch_y.size(0)
total_dataset_size += b_size
train_mse.append(mse.item())
train_dt.append(dt_loss.item())
train_dtw.append( loss_dtw )
train_tdi.append( loss_tdi )
train_mse = np.average(train_mse)
train_dtw = np.average(train_dtw)
train_dt = np.average(train_dt)
train_tdi = np.average(train_tdi)
if train_mse * 1.0001 < best_train_mse:
best_train_mse = train_mse
print('Epoch: {} Train MSE: {:.4f}, Train DTW : {:.4f}, Train dT : {:.4f} Train TDI: {:.4f} Time :{:.4f}'.format(epoch,train_mse,train_dtw,train_dt,train_tdi,(time.time()-start_time)))
memory_usage = torch.cuda.max_memory_allocated(device) - baseline_memory
val_mse,val_dtw,val_dt,val_tdi,val_loss = evaluate(epoch,model,optimizer,val_dataloader,args.model,times,loss_fn,NLL_fn)
test_mse,test_dtw,test_dt,test_tdi ,test_loss= evaluate(epoch,model,optimizer,test_dataloader,args.model,times,loss_fn,NLL_fn)
print('Epoch: {} Validation MSE: {:.4f}, Validation DTW : {:.4f}, Validation dT : {:.4f} TDI: {:.4f} Time :{:.4f}'.format(epoch, val_mse,val_dtw,val_dt,val_tdi,(time.time()-start_time)))
print('Epoch: {} Test MSE: {:.4f}, Test DTW : {:.4f}, Test dT: {:.4f} TestTDI: {:.4f} Time :{:.4f}'.format(epoch, test_mse,test_dtw,test_dt,test_tdi,(time.time()-start_time)))
print(f"memory_usage:{memory_usage}")
def main(model_name=args.model,num_epochs=args.epoch):
manual_seed = args.seed
np.random.seed(manual_seed)
random.seed(manual_seed)
torch.manual_seed(manual_seed)
torch.cuda.manual_seed(manual_seed)
torch.cuda.manual_seed_all(manual_seed)
torch.random.manual_seed(manual_seed)
print(f"Setting of this Experiments {args}")
device="cuda"
train_dataloader, val_dataloader,test_dataloader,input_channels ,output_channels= contime_dataset.get_dataset(args,device)
model = control_tower.Model_selection_part(args,input_channels=input_channels,output_channels=output_channels, device=device )
times = torch.Tensor(np.arange(args.seq_len))
if args.pretrained:
load_model(args)
exit()
model=model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay = args.weight_decay)
loss_fn = torch.nn.MSELoss()
NLL_fn = torch.nn.NLLLoss()
if args.training:
ckpt_file = train(args,model,times,train_dataloader, val_dataloader,test_dataloader,optimizer,loss_fn,NLL_fn,device)
else:
MODEL_PATH = '../CONTIME_KDD/trained_model/'+str(args.model)+'/'+str(args.dataset)+'/'+str(args.seq_len)+"_"+str(args.pred_len)+"_"+str(args.stride_len)+"_"+str(args.note)+"_"+str(args.lr)+"_"+str(args.alpha)+"_"+str(args.beta)+"/"
ckpt_file = MODEL_PATH+"contime.pth"
print("============> Evaluation <============")
mae, mse, rmse, mape, mspe, rse, corr,tdi,dtw = load_model(args,ckpt_file,visualize_version=args.visualize_version)
print("Final Results MAE: {:.4f} MSE: {:.4F} RMSE: {:.4f} MAPE: {:.4f} MSPE: {:.4f} RSE: {:.4f} TDI: {:.4f} DTW: {:.4f}".format(mae,mse,rmse,mape,mspe,rse,tdi,dtw))
if __name__ == '__main__':
main()