diff --git a/README.md b/README.md index 1246826..0156337 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,6 @@ ![Daany Logo](./docs/img/daany_logo_small.png) -Daany - DAta ANalYtics C# library with the implementation of DataFrame, Time series decomposition and various statistical parameters. +Daany - **DA**ta **AN**al**Y**tics C# library with the implementation of DataFrame, Time series decomposition and various statistical parameters. # Data Frame @@ -60,9 +60,9 @@ So let's create the Iris class with only three properties since we want to use o ```csharp class Iris { -public float PetalArea { get; set; } -public float SepalArea { get; set; } -public string Species { get; set; } + public float PetalArea { get; set; } + public float SepalArea { get; set; } + public string Species { get; set; } } ``` Now that we have class type implemented we can load the data frame into ML.NET: @@ -99,7 +99,7 @@ var dataPipeline = mlContext.Transforms.Conversion.MapValueToKey( .Append(mlContext.Transforms.Concatenate("Features",nameof(Iris.SepalArea), nameof(Iris.PetalArea))); ``` -Use datapipeline and trainSet and train and build the model. Algorithm selection and training process is implemented in the ```Train``` method.: +Use datapipeline and trainSet to train and build the model. ```csharp //train and build the model //create Trainer @@ -134,8 +134,8 @@ With SSA, you can decompose the time series into any number of components (signa ```csharp var strPath = $"{root}/AirPassengers.csv"; -var mlDF = DataFrame.FromCsv(strPath, sep: ","); -var ts = mlDF["#Passengers"].Select(f => Convert.ToDouble(f));//create time series +var mlDF = DataFrame.FromCsv(strPath, sep: ','); +var ts = mlDF["#Passengers"].Select(f => Convert.ToDouble(f));//create time series from data frame ``` Now that we have AirPasanger time series, we can create SSA object by passing the time series into it: ```csharp