forked from wenhuchen/OTT-QA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlink_prediction.py
344 lines (275 loc) · 14.5 KB
/
link_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import argparse
import logging
from tqdm import trange
import torch
import torch.nn.functional as F
import numpy as np
from torch import nn
from torch.autograd import Variable
from transformers import GPT2Config
from transformers import GPT2LMHeadModel, GPT2Tokenizer
from torch.utils.data import Dataset
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
import json
import torch.optim as optim
from tqdm import trange, tqdm
import math
from datetime import datetime
from utils import whitelist, is_year
import sys
import copy
def set_seed(args):
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def sample_sequence(model, length, context, args, num_samples=1, temperature=1, stop_token=None, \
top_k=0, top_p=0.0, device='cuda'):
if isinstance(context, list):
context = torch.tensor(context, dtype=torch.long, device=device)
context = context.unsqueeze(0).repeat(num_samples, 1)
generated = context
batch_size = generated.shape[0]
finished_sentence = [False for _ in range(batch_size)]
with torch.no_grad():
for _ in range(length):
outputs = model(generated, *args)
if isinstance(outputs, list) or isinstance(outputs, tuple):
next_token_logits = outputs[0][:, -1, :] / (temperature if temperature > 0 else 1.)
else:
next_token_logits = outputs[:, -1, :] / (temperature if temperature > 0 else 1.)
if temperature == 0: # greedy sampling:
next_token = torch.argmax(next_token_logits, dim=-1).unsqueeze(-1)
else:
next_token = torch.multinomial(torch.softmax(next_token_logits, dim=-1), num_samples=1)
generated = torch.cat((generated, next_token), dim=1)
if all(finished_sentence):
break
return generated
class LinkGenearationDataset(Dataset):
def __init__(self, datapath, option, tokenizer, source_max_len, target_max_len, shards=None):
super(LinkGenearationDataset, self).__init__()
self.tokenizer = tokenizer
self.source_max_len = source_max_len
self.target_max_len = target_max_len
self.option = option
self.mapping = {}
assert option in ['train', 'dev', 'all']
if option != 'all':
with open('released_data/train_dev_test_table_ids.json', 'r') as f:
table_ids = set(json.load(f)[option])
with open(datapath) as f:
tables = json.load(f)
if self.option == 'all':
assert shards is not None
index, total_shard = [int(_) for _ in shards.split('@')]
table_ids = list(tables.keys())
length = len(table_ids) // total_shard
table_ids = table_ids[index * length : (index+1) * length]
print("Running {} out of shard {}".format(index, total_shard))
table_ids = set(table_ids)
self.data = []
for k, table in tables.items():
if k not in table_ids:
continue
title = table['title']
sec_title = table['section_title']
if isinstance(table['header'][0], list):
headers = [_[0] for _ in table['header']]
else:
headers = table['header']
for i, row in enumerate(table['data']):
row_id = k + '_{}'.format(i)
for header, cell in zip(headers, row):
content = cell[0] if isinstance(cell, list) else cell
assert isinstance(content, str)
if not whitelist(content):
continue
inputs = 'In ' + title + ' [SEP] ' + sec_title + ' [SEP] ' + header + ' [ENT] ' + content + ' [ENT] '
links = []
if isinstance(cell, list):
for link in cell[1]:
links.append(link.replace('/wiki/', '').replace('_', ' '))
else:
# For plain tables
pass
outputs = ' # '.join(links)
self.data.append((row_id, inputs, outputs))
def __len__(self):
return len(self.data)
def __getitem__(self, index):
row_id, inputs, outputs = self.data[index]
links = copy.deepcopy(outputs)
prefix = self.tokenizer.encode(inputs, add_special_tokens=False)
prefix = prefix[max(0, len(prefix) - self.source_max_len):]
prefix = [self.tokenizer.eos_token_id] * (self.source_max_len - len(prefix)) + prefix
outputs = self.tokenizer.encode('[START] ' + outputs + ' [EOS]', add_special_tokens=False)
outputs = outputs[:self.target_max_len]
outputs = outputs + [self.tokenizer.eos_token_id] * (self.target_max_len - len(outputs))
trg_input = outputs[:-1]
trg_output = outputs[1:]
prefix = torch.LongTensor(prefix)
trg_input = torch.LongTensor(trg_input)
trg_output = torch.LongTensor(trg_output)
mask = (trg_output != self.tokenizer.eos_token_id).float()
return row_id, links, prefix, trg_input, trg_output, mask
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--model", default='gpt2', type=str)
parser.add_argument("--top_k", type=int, default=0)
parser.add_argument("--top_p", type=float, default=0.9)
parser.add_argument('--seed', type=int, default=42, help="random seed for initialization")
parser.add_argument('--dataset', default=None, type=str, help="Whether to use dataset")
parser.add_argument('--load_from', default=None, type=str, help="Whether to use dataset")
parser.add_argument('--batch_size', default=128, type=int, help="Whether to use dataset")
parser.add_argument('--every', default=50, type=int, help="Whether to use dataset")
parser.add_argument('--max_source_len', default=32, type=int, help="Whether to use dataset")
parser.add_argument('--max_target_len', default=16, type=int, help="Whether to use dataset")
parser.add_argument('--do_train', default=False, action="store_true", help="whether to train or test the model")
parser.add_argument('--do_all', default=False, action="store_true", help="whether to train or test the model")
parser.add_argument('--do_val', default=False, action="store_true", help="whether to train or test the model")
parser.add_argument('--learning_rate', default=5e-6, type=float, help="whether to train or test the model")
parser.add_argument('--shard', default=None, type=str, help="whether to train or test the model")
args = parser.parse_args()
args.device = torch.device("cuda")
args.n_gpu = torch.cuda.device_count()
tokenizer = GPT2Tokenizer.from_pretrained(args.model)
tokenizer.add_tokens(['[SEP]', '[EOS]', '[START]', '[ENT]'])
model = GPT2LMHeadModel.from_pretrained(args.model)
model.resize_token_embeddings(len(tokenizer))
criterion = nn.CrossEntropyLoss(reduction='none', ignore_index=-1)
if args.do_train:
print("Start Training.")
model = nn.DataParallel(model)
model.to(args.device)
recording_time = datetime.now().strftime('%m_%d_%H_%M')
tb_writer = SummaryWriter(log_dir='link_generator/{}'.format(recording_time))
dataset = LinkGenearationDataset(args.dataset, 'train', tokenizer, args.max_source_len, args.max_target_len)
optimizer = optim.Adam(model.parameters(), args.learning_rate)
train_sampler = RandomSampler(dataset)
train_dataloader = DataLoader(dataset, sampler=train_sampler, batch_size=args.batch_size, num_workers=8, pin_memory=True, drop_last=True)
print("Dataset Size = {}. Loader Size = {}".format(len(dataset), len(train_dataloader)))
avg_loss = 0
global_step = 0
for epoch in trange(10):
epoch_iterator = tqdm(train_dataloader, desc="Iteration")
for step, indexed_batch in enumerate(epoch_iterator):
model.train()
batch = tuple(t.to(args.device) for t in indexed_batch[2:])
prefix, trg_inp, trg_out, mask = batch
inputs = torch.cat([prefix, trg_inp], 1)
model.zero_grad()
optimizer.zero_grad()
logits = model(inputs)[0]
logits = logits[:, -trg_out.shape[1]:, :].contiguous()
loss = criterion(logits.view(-1, logits.shape[-1]), trg_out.view(-1))
loss = loss * mask.view(-1)
loss = loss.sum() / mask.sum()
avg_loss += loss.item()
loss.backward()
optimizer.step()
global_step += 1
if step % args.every == 0 and step > 0:
model.eval()
tb_writer.add_scalar("loss", math.exp(avg_loss / args.every), global_step)
prefix = torch.cat([prefix, trg_inp[:, :1]], -1)
prefix = prefix[:2]
gt_inputs = trg_out.cpu().data.numpy()[:2]
samples = sample_sequence(model, 16, prefix, [], 1, temperature=0)
samples = samples[:, prefix.shape[1]:]
samples = samples.cpu().data.numpy()
prefix = prefix.cpu().data.numpy()
for p, s, gt in zip(prefix, samples, gt_inputs):
text = tokenizer.decode(s, clean_up_tokenization_spaces=True)
text = text[: text.find('[EOS]')]
pre_text = tokenizer.decode(p, clean_up_tokenization_spaces=True)
print("Input |||||| ", pre_text)
print("PREDICTION |||||| ", text)
text = tokenizer.decode(gt, clean_up_tokenization_spaces=True)
text = text[: text.find('[EOS]')]
print("GROUNDTRUH |||||| ",text)
break
avg_loss = 0
torch.save(model.module.state_dict(), 'link_generator/model-ep{}.pt'.format(epoch))
if args.do_val:
dataset = LinkGenearationDataset(args.dataset, 'all', tokenizer, args.max_source_len, args.max_target_len)
sampler = SequentialSampler(dataset)
dev_dataloader = DataLoader(dataset, sampler=sampler, batch_size=args.batch_size, num_workers=0, pin_memory=True, drop_last=True)
print("Dataset Size = {}. Loader Size = {}".format(len(dataset), len(dev_dataloader)))
model.load_state_dict(torch.load(args.load_from))
model = nn.DataParallel(model)
model.to(args.device)
model.eval()
print("Loaded model from {}".format(args.load_from))
succ, prec_total, recall_total = 0, 0, 0
mapping = {}
for step, indexed_batch in enumerate(dev_dataloader):
batch = tuple(t.to(args.device) for t in indexed_batch[2:])
row_ids = indexed_batch[0]
links = indexed_batch[1]
prefix, trg_inp, trg_out, mask = batch
prefix = torch.cat([prefix, trg_inp[:, :1]], -1)
with torch.no_grad():
samples = sample_sequence(model, 16, prefix, [], 1, temperature=0)
samples = samples[:, prefix.shape[1]:]
samples = samples.cpu().data.numpy()
for row_id, link, s in zip(row_ids, links, samples):
text = tokenizer.decode(s, clean_up_tokenization_spaces=True)
decoded = []
for _ in text[:text.find('[EOS]')].split(' # '):
name = _.replace('#', '').strip()
if len(name) > 1:
decoded.append(name)
link = link.split(' # ')
succ += len(set(link) & set(decoded))
prec_total += len(decoded)
recall_total += len(link)
mapping[row_id] = mapping.get(row_id, []) + decoded
precision = succ / prec_total
recall = succ / recall_total
f1 = 2 * precision * recall / (precision + recall)
sys.stdout.write('finished {}/{} ratio {} \r'.format(step, len(dev_dataloader), f1))
with open('link_generator/row_passage_query.json', 'w') as f:
json.dump(mapping, f, indent=2)
if args.do_all:
assert '@' in args.shard
dataset = LinkGenearationDataset(args.dataset, 'all', tokenizer, args.max_source_len, args.max_target_len, args.shard)
sampler = SequentialSampler(dataset)
dev_dataloader = DataLoader(dataset, sampler=sampler, batch_size=args.batch_size, num_workers=8, pin_memory=True, drop_last=True)
print("Dataset Size = {}. Loader Size = {}".format(len(dataset), len(dev_dataloader)))
model.load_state_dict(torch.load(args.load_from))
model = nn.DataParallel(model)
model.to(args.device)
model.eval()
print("Loaded model from {}".format(args.load_from))
mapping = {}
for indexed_batch in tqdm(dev_dataloader, desc="Decoding"):
batch = tuple(t.to(args.device) for t in indexed_batch[2:])
row_ids = indexed_batch[0]
links = indexed_batch[1]
prefix, trg_inp, trg_out, mask = batch
prefix = torch.cat([prefix, trg_inp[:, :1]], -1)
samples = sample_sequence(model, 16, prefix, [], 1, temperature=0)
samples = samples[:, prefix.shape[1]:]
samples = samples.cpu().data.numpy()
for row_id, link, s in zip(row_ids, links, samples):
text = tokenizer.decode(s, clean_up_tokenization_spaces=True)
decoded = []
for _ in text[:text.find('[EOS]')].split(' # '):
name = _.replace('#', '').strip()
if len(name) > 1 and name not in decoded:
decoded.append(name)
mapping[row_id] = mapping.get(row_id, []) + decoded
continue
for k, v in dataset.mapping.items():
if k not in mapping:
mapping[k] = v
else:
mapping[k].extend(v)
index, shard = [int(_) for _ in args.shard.split('@')]
f = open('link_generator/row_passage_query.json-0000{}-0000{}'.format(index, shard), 'w')
for k, v in mapping.items():
json_str = json.dumps((k, v))
f.write(json_str + '\n')
f.close()