forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ffn_layer.py
77 lines (64 loc) · 2.51 KB
/
ffn_layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Implementation of fully connected network."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
class FeedForwardNetwork(tf.keras.layers.Layer):
"""Fully connected feedforward network."""
def __init__(self, hidden_size, filter_size, relu_dropout):
"""Initialize FeedForwardNetwork.
Args:
hidden_size: int, output dim of hidden layer.
filter_size: int, filter size for the inner (first) dense layer.
relu_dropout: float, dropout rate for training.
"""
super(FeedForwardNetwork, self).__init__()
self.hidden_size = hidden_size
self.filter_size = filter_size
self.relu_dropout = relu_dropout
def build(self, input_shape):
self.filter_dense_layer = tf.keras.layers.Dense(
self.filter_size,
use_bias=True,
activation=tf.nn.relu,
name="filter_layer")
self.output_dense_layer = tf.keras.layers.Dense(
self.hidden_size, use_bias=True, name="output_layer")
super(FeedForwardNetwork, self).build(input_shape)
def get_config(self):
return {
"hidden_size": self.hidden_size,
"filter_size": self.filter_size,
"relu_dropout": self.relu_dropout,
}
def call(self, x, training):
"""Return outputs of the feedforward network.
Args:
x: tensor with shape [batch_size, length, hidden_size]
training: boolean, whether in training mode or not.
Returns:
Output of the feedforward network.
tensor with shape [batch_size, length, hidden_size]
"""
# Retrieve dynamically known shapes
batch_size = tf.shape(x)[0]
length = tf.shape(x)[1]
output = self.filter_dense_layer(x)
if training:
output = tf.nn.dropout(output, rate=self.relu_dropout)
output = self.output_dense_layer(output)
return output