forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
multi_channel_attention.py
146 lines (126 loc) · 5.95 KB
/
multi_channel_attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Multi-channel decoder."""
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function
import math
import tensorflow as tf
from official.modeling import tf_utils
from official.nlp.modeling import layers
class DocAttention(tf.keras.layers.Layer):
"""Documents Attention layer."""
def __init__(self,
num_heads,
head_size,
kernel_initializer="glorot_uniform",
bias_initializer="zeros",
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs):
super(DocAttention, self).__init__(**kwargs)
self._num_heads = num_heads
self._head_size = head_size
self._kernel_initializer = tf.keras.initializers.get(kernel_initializer)
self._bias_initializer = tf.keras.initializers.get(bias_initializer)
self._kernel_regularizer = tf.keras.regularizers.get(kernel_regularizer)
self._bias_regularizer = tf.keras.regularizers.get(bias_regularizer)
self._kernel_constraint = tf.keras.constraints.get(kernel_constraint)
self._bias_constraint = tf.keras.constraints.get(bias_constraint)
def build(self, unused_input_shapes):
self._query_dense = layers.DenseEinsum(
output_shape=(self._num_heads, self._head_size),
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer,
activity_regularizer=self._activity_regularizer,
kernel_constraint=self._kernel_constraint,
bias_constraint=self._bias_constraint,
dtype=self.dtype,
name="encdocatt_query")
self._key_dense = layers.DenseEinsum(
output_shape=(self._num_heads, self._head_size),
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer,
activity_regularizer=self._activity_regularizer,
kernel_constraint=self._kernel_constraint,
bias_constraint=self._bias_constraint,
dtype=self.dtype,
name="encdocatt_key")
super(DocAttention, self).build(unused_input_shapes)
def call(self, encoder_outputs, doc_attention_mask):
num_docs = tf_utils.get_shape_list(encoder_outputs, expected_rank=[4])[1]
cls_embeddings = encoder_outputs[:, :, 0, :]
key = self._key_dense(cls_embeddings)
query = self._query_dense(cls_embeddings)
doc_attention_mask = tf.cast(doc_attention_mask, tf.float32)
key = tf.einsum("BANH,BA->BANH", key, doc_attention_mask)
query = tf.einsum("BANH,BA->BANH", query, doc_attention_mask)
attention_matrix = tf.einsum("BXNH,BYNH->BNXY", query, key)
mask = tf.ones([num_docs, num_docs])
mask = tf.linalg.set_diag(mask, tf.zeros(num_docs))
attention_matrix = tf.einsum("BNXY,XY->BNXY", attention_matrix, mask)
doc_attention_probs = tf.einsum("BNAY->BNA", attention_matrix)
doc_attention_probs = tf.einsum("BNA->BA", doc_attention_probs)
infadder = (1.0 - doc_attention_mask) * -100000.0
return tf.nn.softmax(doc_attention_probs + infadder)
class MultiChannelAttention(layers.MultiHeadAttention):
"""Multi-channel Attention layer."""
def build(self, input_shape):
super(MultiChannelAttention, self).build(input_shape)
self._masked_softmax = layers.MaskedSoftmax(mask_expansion_axes=[2])
def call(self, inputs, attention_mask=None):
from_tensor = inputs[0]
to_tensor = inputs[1]
doc_attention_probs = inputs[2]
# Scalar dimensions referenced here:
# B = batch size (number of stories)
# A = num_docs (number of docs)
# F = `from_tensor` sequence length
# T = `to_tensor` sequence length
# N = `num_attention_heads`
# H = `size_per_head`
# `query_tensor` = [B, F, N ,H]
query_tensor = self._query_dense(from_tensor)
# `key_tensor` = [B, A, T, N, H]
key_tensor = self._key_dense(to_tensor)
# `value_tensor` = [B, A, T, N, H]
value_tensor = self._value_dense(to_tensor)
# Take the dot product between "query" and "key" to get the raw
# attention scores.
attention_scores = tf.einsum("BATNH,BFNH->BANFT", key_tensor, query_tensor)
attention_scores = tf.multiply(attention_scores,
1.0 / math.sqrt(float(self._key_size)))
# Normalize the attention scores to probabilities.
# `attention_probs` = [B, A, N, F, T]
attention_probs = self._masked_softmax([attention_scores, attention_mask])
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self._dropout_layer(attention_probs)
# `context_layer` = [B, F, N, H]
context_layer = tf.einsum("BANFT,BATNH->BAFNH", attention_probs,
value_tensor)
attention_output = tf.einsum("BNFA,BAFNH->BFNH", doc_attention_probs,
context_layer)
attention_output = self._output_dense(attention_output)
return attention_output