-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathga.py
548 lines (437 loc) · 16.2 KB
/
ga.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
import bpy
import bmesh
import random
from phaenotyp import basics, geometry, calculation
def create_indivdual(chromosome, parent_1, parent_2):
"""
Creates an individual for bruteforce mode.
:param chromosome: The chromosome is a list of floats from 0 to 1.
:parent_1: The first parent as class instance individual.
:parent_2: The second parent as class instance individual.
"""
scene = bpy.context.scene
phaenotyp = scene.phaenotyp
data = scene["<Phaenotyp>"]
obj = data["structure"]
shape_keys = obj.data.shape_keys.key_blocks
members = data["members"]
frame = bpy.context.scene.frame_current
environment = data["environment"]
individuals = data["individuals"]
# apply shape keys
geometry.set_shape_keys(shape_keys, chromosome)
individual = {}
individual["name"] = str(frame) # individuals are identified by frame
individual["chromosome"] = chromosome
individual["parent_1"] = str(parent_1)
individual["parent_2"] = str(parent_2)
individual["fitness"] = {}
individuals[str(frame)] = individual
def generate_basis():
"""
Creates the basis individual for the genetic algorithm.
This individual is used to calculate the weighted fitness of all others.
"""
scene = bpy.context.scene
phaenotyp = scene.phaenotyp
data = scene["<Phaenotyp>"]
obj = data["structure"]
shape_keys = obj.data.shape_keys.key_blocks
members = data["members"]
environment = data["environment"]
individuals = data["individuals"]
# create chromosome all set to 0
chromosome = []
for gnome_len in range(len(shape_keys)-1): # -1 to exlude basis
gene = 0
chromosome.append(gene)
# update scene
bpy.context.scene.frame_current = 0
bpy.context.view_layer.update()
create_indivdual(chromosome, None, None) # and change frame to shape key
def calculate_basis():
scene = bpy.context.scene
phaenotyp = scene.phaenotyp
if phaenotyp.optimization_pn != "none" or phaenotyp.optimization_fd != "none" or phaenotyp.optimization_quads != "none":
# calculate frames
calculation.calculate_frames(0, 1)
for i in range(phaenotyp.optimization_amount):
# optimize each frame
basics.jobs.append([calculation.sectional_optimization, 0])
# calculate frames again
calculation.calculate_frames(0, 1)
# without optimization
else:
# calculate frames
calculation.calculate_frames(0, 1)
# calculate fitness and set weight for basis
basics.jobs.append([calculation.calculate_fitness, 0])
basics.jobs.append([calculation.set_basis_fitness])
def mate_chromosomes(chromosome_1, chromosome_2):
'''
Function to mate chromosomes.
:param chromosom_1: First chromosome for mating as list of floats.
:param chromosom_2: Second chromosome for mating as list of floats.
'''
scene = bpy.context.scene
phaenotyp = scene.phaenotyp
data = scene["<Phaenotyp>"]
environment = data["environment"]
individuals = data["individuals"]
if phaenotyp.mate_type == "direct":
# chromosome for offspring
child_chromosome = []
for gp1, gp2 in zip(chromosome_1, chromosome_2):
# random probability
prob = random.random()
# if prob is less than 0.45, insert gene from parent 1
if prob < 0.45:
child_chromosome.append(gp1)
# if prob is between 0.45 and 0.90, insert gene from parent 2
elif prob < 0.90:
child_chromosome.append(gp2)
# otherwise insert random gene(mutate) to maintain diversity
else:
child_chromosome.append(random.choice(environment["genes"]))
if phaenotyp.mate_type == "morph":
# chromosome for offspring
child_chromosome = []
for gp1, gp2 in zip(chromosome_1, chromosome_2):
# random probability
prob = random.random()
# if prob is less than 0.9, morph genes from parents
if prob < 0.90:
morph = (gp1 + gp2)*0.5
child_chromosome.append(morph)
# otherwise insert random gene(mutate) to maintain diversity
else:
child_chromosome.append(random.choice(environment["genes"]))
return child_chromosome
def create_initial_individuals(frames):
'''
Create random individuals of the first generation.
Every frame is for one individual only.
:param start: Frame to start at.
:param end: Frame to end with.
'''
scene = bpy.context.scene
phaenotyp = scene.phaenotyp
data = scene["<Phaenotyp>"]
obj = data["structure"]
shape_keys = obj.data.shape_keys.key_blocks
members = data["members"]
environment = data["environment"]
individuals = data["individuals"]
start, end = frames
# calculate all frames
for frame in range(start, end):
# create chromosome with set of shapekeys (random for first generation)
new_chromosome_found = False
for i in range(100): # run for max 100 times, if no new chromosome is found
# create new chromosome
chromosome = []
for gnome_len in range(len(shape_keys)-1): # -1 to exlude basis
gene = random.choice(environment["genes"])
chromosome.append(gene)
# check if existing
for id, individual in individuals.items():
if individual["chromosome"].to_list() == chromosome:
if i < 100:
text = "chromosome" + str(chromosome) + " allready exists. I try again ..."
basics.print_data(text)
else:
basics.print_data("No new chromosome after retrying for 100 times. Maybe you want to run bruteforce?")
new_chromosome_found = False
break
else:
new_chromosome_found = True
# break if a new chromosome was found
if new_chromosome_found == True:
# exit, because a new key was found
text = "new individual with chromosome" + str(chromosome)
basics.print_data(text)
break
# update scene
bpy.context.scene.frame_current = frame
bpy.context.view_layer.update()
create_indivdual(chromosome, None, None) # and change frame to shape key
def calculate_individuals(frames):
start, end = frames
scene = bpy.context.scene
phaenotyp = scene.phaenotyp
if phaenotyp.optimization_pn != "none" or phaenotyp.optimization_fd != "none" or phaenotyp.optimization_quads != "none":
# calculate frames
calculation.calculate_frames(start, end)
for i in range(phaenotyp.optimization_amount):
for frame in range(start, end):
# optimize each frame
basics.jobs.append([calculation.sectional_optimization, frame])
# calculate frames again
calculation.calculate_frames(start, end)
# without optimization
else:
# calculate frames
calculation.calculate_frames(start, end)
# calculate fitness
for frame in range(start, end):
basics.jobs.append([calculation.calculate_fitness, frame])
def populate_initial_generation():
'''
Populate the first generation.
'''
scene = bpy.context.scene
data = scene["<Phaenotyp>"]
members = data["members"]
environment = data["environment"]
individuals = data["individuals"]
# create initial generation
environment["generations"]["0"] = {} # create dict
initial_generation = environment["generations"]["0"]
# copy to generation
for name, individual in individuals.items():
# get data from individual
chromosome = individual["chromosome"]
fitness = individual["fitness"]
parent_1 = individual["parent_1"]
parent_2 = individual["parent_2"]
# copy individual to next generation
individual_copy = {}
individual_copy["name"] = name
individual_copy["chromosome"] = chromosome
individual_copy["fitness"] = fitness
individual_copy["parent_1"] = parent_1
individual_copy["parent_2"] = parent_2
initial_generation[name] = individual_copy
# get text from chromosome for printing
str_chromosome = "["
for gene in individual["chromosome"]:
str_chromosome += str(round(gene, 3))
str_chromosome += ", "
str_chromosome = str_chromosome[:-2]
str_chromosome += "]"
# print info
text = "individual: " + str(individual["name"]) + " "
text += str_chromosome + ", fitness: " + str(individual["fitness"]["weighted"])
basics.print_data(text)
def do_elitism():
'''
Copy the best individuals to the next generation directly.
'''
scene = bpy.context.scene
data = scene["<Phaenotyp>"]
members = data["members"]
environment = data["environment"]
individuals = data["individuals"]
generation_id = data["environment"]["generation_id"]
# the current generation
current_generation = environment["generations"][str(generation_id)]
# sort current generation according to fitness
list_result = []
for name, individual in current_generation.items():
list_result.append([name, individual["chromosome"], individual["fitness"]["weighted"]])
sorted_list = sorted(list_result, key = lambda x: x[2])
# the next generation
generation_id = generation_id + 1 # increase id
data["environment"]["generation_id"] = generation_id # += would not working
environment["generations"][str(generation_id)] = {} # create dict
next_generation = environment["generations"][str(generation_id)]
# copy fittest ten percent directly
for i in range(environment["elitism"]):
# name of nth best individual
name = sorted_list[i][0]
# get individual
individual = individuals[name]
# get data from individual
chromosome = individual["chromosome"]
fitness = individual["fitness"]
parent_1 = individual["parent_1"]
parent_2 = individual["parent_2"]
# copy individual to next generation
individual_copy = {}
individual_copy["name"] = name
individual_copy["chromosome"] = chromosome
individual_copy["fitness"] = fitness
individual_copy["parent_1"] = parent_1
individual_copy["parent_2"] = parent_2
next_generation[name] = individual_copy
# get text from chromosome for printing
str_chromosome = "["
for gene in individual["chromosome"]:
str_chromosome += str(round(gene, 3))
str_chromosome += ", "
str_chromosome = str_chromosome[:-2]
str_chromosome += "]"
# print info
text = "elitism: " + str(individual["name"]) + " "
text += str_chromosome + ", fitness: " + str(individual["fitness"]["weighted"])
basics.print_data(text)
def create_new_individuals(frames):
'''
Create new individuals for all generations except of generation 1.
:param start: Frame to start at.
:param end: Frame to end with.
'''
scene = bpy.context.scene
phaenotyp = scene.phaenotyp
data = scene["<Phaenotyp>"]
obj = data["structure"]
shape_keys = obj.data.shape_keys.key_blocks
members = data["members"]
environment = data["environment"]
individuals = data["individuals"]
new_generation_size = environment["new_generation_size"]
generation_id = environment["generation_id"]
old_generation = environment["generations"][str(generation_id-1)]
start, end = frames
# sort current generation according to fitness
list_result = []
for name, individual in old_generation.items():
list_result.append([name, individual["chromosome"], individual["fitness"]["weighted"]])
sorted_list = sorted(list_result, key = lambda x: x[2])
for frame in range(start, end):
# create chromosome from two parents
new_chromosome_found = False
for i in range(100): # run for max 100 times, if no new chromosome is found
# create new chromosome
# pair best 50 % of the previous generation
# sample is used to avoid same random numbers
random_numbers = random.sample(range(int(new_generation_size*0.5)), 2)
parent_1_name = sorted_list[random_numbers[0]][0]
parent_2_name = sorted_list[random_numbers[1]][0]
parent_1 = individuals[parent_1_name]
parent_2 = individuals[parent_2_name]
chromosome = mate_chromosomes(parent_1["chromosome"], parent_2["chromosome"])
# check if existing
for id, individual in individuals.items():
if individual["chromosome"].to_list() == chromosome:
if i < 100:
text = "chromosome" + str(chromosome) + " allready exists. I try again ..."
basics.print_data(text)
else:
basics.print_data("No new chromosome after retrying for 100 times. Maybe you want to run bruteforce?")
new_chromosome_found = False
break
else:
new_chromosome_found = True
# break if a new chromosome was found
if new_chromosome_found == True:
# exit, because a new key was found
text = "new individual with chromosome" + str(chromosome)
basics.print_data(text)
break
# update scene
bpy.context.scene.frame_current = frame
bpy.context.view_layer.update()
# and change frame to shape key - save name of parents for tree
create_indivdual(chromosome, parent_1_name, parent_2_name)
def populate_new_generation(frames):
'''
Populate all generations that except of generation 1.
'''
scene = bpy.context.scene
phaenotyp = scene.phaenotyp
data = scene["<Phaenotyp>"]
obj = data["structure"]
shape_keys = obj.data.shape_keys.key_blocks
members = data["members"]
environment = data["environment"]
individuals = data["individuals"]
new_generation_size = environment["new_generation_size"]
generation_id = environment["generation_id"]
# the current generation, that was created in do_elitism
generation = environment["generations"][str(generation_id)]
start, end = frames
# copy to generations
for name, individual in individuals.items():
for frame in range(start, end):
# get from individuals
if str(frame) == name:
# get individual
individual = individuals[name]
# get data from individual
chromosome = individual["chromosome"]
fitness = individual["fitness"]
parent_1 = individual["parent_1"]
parent_2 = individual["parent_2"]
# copy individual to next generation
individual_copy = {}
individual_copy["name"] = name
individual_copy["chromosome"] = chromosome
individual_copy["fitness"] = fitness
individual_copy["parent_1"] = parent_1
individual_copy["parent_2"] = parent_2
generation[name] = individual_copy
# get text from chromosome for printing
str_chromosome = "["
for gene in individual["chromosome"]:
str_chromosome += str(round(gene, 3))
str_chromosome += ", "
str_chromosome = str_chromosome[:-2]
str_chromosome += "]"
# print info
text = "child: " + str(individual["name"]) + " "
text += str_chromosome + ", fitness: " + str(individual["fitness"]["weighted"])
basics.print_data(text)
def finish():
# update view
basics.jobs.append([basics.view_vertex_colors])
# print done
basics.jobs.append([basics.print_data, "done"])
def start():
scene = bpy.context.scene
phaenotyp = scene.phaenotyp
data = scene["<Phaenotyp>"]
obj = data["structure"]
# pass from gui
data["environment"]["generation_size"] = phaenotyp.generation_size
data["environment"]["elitism"] = phaenotyp.elitism
data["environment"]["generation_amount"] = phaenotyp.generation_amount
data["environment"]["new_generation_size"] = phaenotyp.generation_size - phaenotyp.elitism
# clear to restart
data["environment"]["generations"] = {}
data["environment"]["generation_id"] = 0
data["environment"]["genes"] = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
data["individuals"] = {}
# shorten
generation_size = data["environment"]["generation_size"]
elitism = data["environment"]["elitism"]
generation_amount = data["environment"]["generation_amount"]
new_generation_size = data["environment"]["new_generation_size"]
generation_id = data["environment"]["generation_id"]
individuals = data["individuals"]
# create temp dictionaries
basics.models = {}
basics.feas = {}
# generate an individual as basis at frame 0
# this individual has choromosome with all genes equals 0
# the fitness of this chromosome is the basis for all others
generate_basis()
calculate_basis()
start = 1
end = generation_size
# set frame_end to first size of inital generation
bpy.context.scene.frame_end = end
# create initial generation
# the first generation contains 20 individuals (standard value is 20)
# the indiviuals are created with random genes
# there is no elitism possible, because there is no previous group
basics.jobs.append([create_initial_individuals, [start, end]])
calculate_individuals([start, end])
basics.jobs.append([populate_initial_generation])
# create all other generations
# 2 indiviuals are taken from previous group (standard value is 10)
# 10 indiviuals are paired (standard ist 50 %)
for i in range(generation_amount):
start = end
end = start + new_generation_size
# expand frame
bpy.context.scene.frame_end = end
# create new generation and copy fittest percent
basics.jobs.append([do_elitism])
basics.jobs.append([create_new_individuals, [start, end]])
calculate_individuals([start, end])
basics.jobs.append([populate_new_generation, [start, end]])
# geometry post and viz
basics.jobs.append([finish])
# run jobs
bpy.ops.wm.phaenotyp_jobs()