|
| 1 | +//! A module containing utility helper structs to transform a [`Curve`] into another. This is useful |
| 2 | +//! for building up complex curves from simple segments. |
| 3 | +use core::marker::PhantomData; |
| 4 | + |
| 5 | +use crate::VectorSpace; |
| 6 | + |
| 7 | +use super::{Curve, Interval}; |
| 8 | + |
| 9 | +/// The curve that results from chaining one curve with another. The second curve is |
| 10 | +/// effectively reparametrized so that its start is at the end of the first. |
| 11 | +/// |
| 12 | +/// Curves of this type are produced by [`Curve::chain`]. |
| 13 | +/// |
| 14 | +/// # Domain |
| 15 | +/// |
| 16 | +/// The first curve's domain must be right-finite and the second's must be left-finite to get a |
| 17 | +/// valid [`ChainCurve`]. |
| 18 | +#[derive(Clone, Debug)] |
| 19 | +#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))] |
| 20 | +#[cfg_attr(feature = "bevy_reflect", derive(bevy_reflect::Reflect))] |
| 21 | +pub struct ChainCurve<T, C, D> { |
| 22 | + pub(super) first: C, |
| 23 | + pub(super) second: D, |
| 24 | + pub(super) _phantom: PhantomData<T>, |
| 25 | +} |
| 26 | + |
| 27 | +impl<T, C, D> Curve<T> for ChainCurve<T, C, D> |
| 28 | +where |
| 29 | + C: Curve<T>, |
| 30 | + D: Curve<T>, |
| 31 | +{ |
| 32 | + #[inline] |
| 33 | + fn domain(&self) -> Interval { |
| 34 | + // This unwrap always succeeds because `first` has a valid Interval as its domain and the |
| 35 | + // length of `second` cannot be NAN. It's still fine if it's infinity. |
| 36 | + Interval::new( |
| 37 | + self.first.domain().start(), |
| 38 | + self.first.domain().end() + self.second.domain().length(), |
| 39 | + ) |
| 40 | + .unwrap() |
| 41 | + } |
| 42 | + |
| 43 | + #[inline] |
| 44 | + fn sample_unchecked(&self, t: f32) -> T { |
| 45 | + if t > self.first.domain().end() { |
| 46 | + self.second.sample_unchecked( |
| 47 | + // `t - first.domain.end` computes the offset into the domain of the second. |
| 48 | + t - self.first.domain().end() + self.second.domain().start(), |
| 49 | + ) |
| 50 | + } else { |
| 51 | + self.first.sample_unchecked(t) |
| 52 | + } |
| 53 | + } |
| 54 | +} |
| 55 | + |
| 56 | +/// The curve that results from reversing another. |
| 57 | +/// |
| 58 | +/// Curves of this type are produced by [`Curve::reverse`]. |
| 59 | +/// |
| 60 | +/// # Domain |
| 61 | +/// |
| 62 | +/// The original curve's domain must be bounded to get a valid [`ReverseCurve`]. |
| 63 | +#[derive(Clone, Debug)] |
| 64 | +#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))] |
| 65 | +#[cfg_attr(feature = "bevy_reflect", derive(bevy_reflect::Reflect))] |
| 66 | +pub struct ReverseCurve<T, C> { |
| 67 | + pub(super) curve: C, |
| 68 | + pub(super) _phantom: PhantomData<T>, |
| 69 | +} |
| 70 | + |
| 71 | +impl<T, C> Curve<T> for ReverseCurve<T, C> |
| 72 | +where |
| 73 | + C: Curve<T>, |
| 74 | +{ |
| 75 | + #[inline] |
| 76 | + fn domain(&self) -> Interval { |
| 77 | + self.curve.domain() |
| 78 | + } |
| 79 | + |
| 80 | + #[inline] |
| 81 | + fn sample_unchecked(&self, t: f32) -> T { |
| 82 | + self.curve |
| 83 | + .sample_unchecked(self.domain().end() - (t - self.domain().start())) |
| 84 | + } |
| 85 | +} |
| 86 | + |
| 87 | +/// The curve that results from repeating a curve `N` times. |
| 88 | +/// |
| 89 | +/// # Notes |
| 90 | +/// |
| 91 | +/// - the value at the transitioning points (`domain.end() * n` for `n >= 1`) in the results is the |
| 92 | +/// value at `domain.end()` in the original curve |
| 93 | +/// |
| 94 | +/// Curves of this type are produced by [`Curve::repeat`]. |
| 95 | +/// |
| 96 | +/// # Domain |
| 97 | +/// |
| 98 | +/// The original curve's domain must be bounded to get a valid [`RepeatCurve`]. |
| 99 | +#[derive(Clone, Debug)] |
| 100 | +#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))] |
| 101 | +#[cfg_attr(feature = "bevy_reflect", derive(bevy_reflect::Reflect))] |
| 102 | +pub struct RepeatCurve<T, C> { |
| 103 | + pub(super) domain: Interval, |
| 104 | + pub(super) curve: C, |
| 105 | + pub(super) _phantom: PhantomData<T>, |
| 106 | +} |
| 107 | + |
| 108 | +impl<T, C> Curve<T> for RepeatCurve<T, C> |
| 109 | +where |
| 110 | + C: Curve<T>, |
| 111 | +{ |
| 112 | + #[inline] |
| 113 | + fn domain(&self) -> Interval { |
| 114 | + self.domain |
| 115 | + } |
| 116 | + |
| 117 | + #[inline] |
| 118 | + fn sample_unchecked(&self, t: f32) -> T { |
| 119 | + // the domain is bounded by construction |
| 120 | + let d = self.curve.domain(); |
| 121 | + let cyclic_t = (t - d.start()).rem_euclid(d.length()); |
| 122 | + let t = if t != d.start() && cyclic_t == 0.0 { |
| 123 | + d.end() |
| 124 | + } else { |
| 125 | + d.start() + cyclic_t |
| 126 | + }; |
| 127 | + self.curve.sample_unchecked(t) |
| 128 | + } |
| 129 | +} |
| 130 | + |
| 131 | +/// The curve that results from repeating a curve forever. |
| 132 | +/// |
| 133 | +/// # Notes |
| 134 | +/// |
| 135 | +/// - the value at the transitioning points (`domain.end() * n` for `n >= 1`) in the results is the |
| 136 | +/// value at `domain.end()` in the original curve |
| 137 | +/// |
| 138 | +/// Curves of this type are produced by [`Curve::forever`]. |
| 139 | +/// |
| 140 | +/// # Domain |
| 141 | +/// |
| 142 | +/// The original curve's domain must be bounded to get a valid [`ForeverCurve`]. |
| 143 | +#[derive(Clone, Debug)] |
| 144 | +#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))] |
| 145 | +#[cfg_attr(feature = "bevy_reflect", derive(bevy_reflect::Reflect))] |
| 146 | +pub struct ForeverCurve<T, C> { |
| 147 | + pub(super) curve: C, |
| 148 | + pub(super) _phantom: PhantomData<T>, |
| 149 | +} |
| 150 | + |
| 151 | +impl<T, C> Curve<T> for ForeverCurve<T, C> |
| 152 | +where |
| 153 | + C: Curve<T>, |
| 154 | +{ |
| 155 | + #[inline] |
| 156 | + fn domain(&self) -> Interval { |
| 157 | + Interval::EVERYWHERE |
| 158 | + } |
| 159 | + |
| 160 | + #[inline] |
| 161 | + fn sample_unchecked(&self, t: f32) -> T { |
| 162 | + // the domain is bounded by construction |
| 163 | + let d = self.curve.domain(); |
| 164 | + let cyclic_t = (t - d.start()).rem_euclid(d.length()); |
| 165 | + let t = if t != d.start() && cyclic_t == 0.0 { |
| 166 | + d.end() |
| 167 | + } else { |
| 168 | + d.start() + cyclic_t |
| 169 | + }; |
| 170 | + self.curve.sample_unchecked(t) |
| 171 | + } |
| 172 | +} |
| 173 | + |
| 174 | +/// The curve that results from chaining a curve with its reversed version. The transition point |
| 175 | +/// is guaranteed to make no jump. |
| 176 | +/// |
| 177 | +/// Curves of this type are produced by [`Curve::ping_pong`]. |
| 178 | +/// |
| 179 | +/// # Domain |
| 180 | +/// |
| 181 | +/// The original curve's domain must be right-finite to get a valid [`PingPongCurve`]. |
| 182 | +#[derive(Clone, Debug)] |
| 183 | +#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))] |
| 184 | +#[cfg_attr(feature = "bevy_reflect", derive(bevy_reflect::Reflect))] |
| 185 | +pub struct PingPongCurve<T, C> { |
| 186 | + pub(super) curve: C, |
| 187 | + pub(super) _phantom: PhantomData<T>, |
| 188 | +} |
| 189 | + |
| 190 | +impl<T, C> Curve<T> for PingPongCurve<T, C> |
| 191 | +where |
| 192 | + C: Curve<T>, |
| 193 | +{ |
| 194 | + #[inline] |
| 195 | + fn domain(&self) -> Interval { |
| 196 | + // This unwrap always succeeds because `curve` has a valid Interval as its domain and the |
| 197 | + // length of `curve` cannot be NAN. It's still fine if it's infinity. |
| 198 | + Interval::new( |
| 199 | + self.curve.domain().start(), |
| 200 | + self.curve.domain().end() + self.curve.domain().length(), |
| 201 | + ) |
| 202 | + .unwrap() |
| 203 | + } |
| 204 | + |
| 205 | + #[inline] |
| 206 | + fn sample_unchecked(&self, t: f32) -> T { |
| 207 | + // the domain is bounded by construction |
| 208 | + let final_t = if t > self.curve.domain().end() { |
| 209 | + self.curve.domain().end() * 2.0 - t |
| 210 | + } else { |
| 211 | + t |
| 212 | + }; |
| 213 | + self.curve.sample_unchecked(final_t) |
| 214 | + } |
| 215 | +} |
| 216 | + |
| 217 | +/// The curve that results from chaining two curves. |
| 218 | +/// |
| 219 | +/// Additionally the transition of the samples is guaranteed to not make sudden jumps. This is |
| 220 | +/// useful if you really just know about the shapes of your curves and don't want to deal with |
| 221 | +/// stitching them together properly when it would just introduce useless complexity. It is |
| 222 | +/// realized by translating the second curve so that its start sample point coincides with the |
| 223 | +/// first curves' end sample point. |
| 224 | +/// |
| 225 | +/// Curves of this type are produced by [`Curve::chain_continue`]. |
| 226 | +/// |
| 227 | +/// # Domain |
| 228 | +/// |
| 229 | +/// The first curve's domain must be right-finite and the second's must be left-finite to get a |
| 230 | +/// valid [`ContinuationCurve`]. |
| 231 | +#[derive(Clone, Debug)] |
| 232 | +#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))] |
| 233 | +#[cfg_attr(feature = "bevy_reflect", derive(bevy_reflect::Reflect))] |
| 234 | +pub struct ContinuationCurve<T, C, D> { |
| 235 | + pub(super) first: C, |
| 236 | + pub(super) second: D, |
| 237 | + // cache the offset in the curve directly to prevent triple sampling for every sample we make |
| 238 | + pub(super) offset: T, |
| 239 | + pub(super) _phantom: PhantomData<T>, |
| 240 | +} |
| 241 | + |
| 242 | +impl<T, C, D> Curve<T> for ContinuationCurve<T, C, D> |
| 243 | +where |
| 244 | + T: VectorSpace, |
| 245 | + C: Curve<T>, |
| 246 | + D: Curve<T>, |
| 247 | +{ |
| 248 | + #[inline] |
| 249 | + fn domain(&self) -> Interval { |
| 250 | + // This unwrap always succeeds because `curve` has a valid Interval as its domain and the |
| 251 | + // length of `curve` cannot be NAN. It's still fine if it's infinity. |
| 252 | + Interval::new( |
| 253 | + self.first.domain().start(), |
| 254 | + self.first.domain().end() + self.second.domain().length(), |
| 255 | + ) |
| 256 | + .unwrap() |
| 257 | + } |
| 258 | + |
| 259 | + #[inline] |
| 260 | + fn sample_unchecked(&self, t: f32) -> T { |
| 261 | + if t > self.first.domain().end() { |
| 262 | + self.second.sample_unchecked( |
| 263 | + // `t - first.domain.end` computes the offset into the domain of the second. |
| 264 | + t - self.first.domain().end() + self.second.domain().start(), |
| 265 | + ) + self.offset |
| 266 | + } else { |
| 267 | + self.first.sample_unchecked(t) |
| 268 | + } |
| 269 | + } |
| 270 | +} |
0 commit comments