You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
# Objective
Make `StableInterpolate` "just work" on tuples whose parts are each
`StableInterpolate` types. These types arise notably through
`Curve::zip` (or just through explicit mapping of a similar form). It
would otherwise be kind of frustrating to stumble upon such a thing and
then realize that, e.g., automatic resampling just doesn't work, even
though there is a very "obvious" way to do it.
## Solution
Infer `StableInterpolate` on tuples of up to size 11. I can make that
number bigger, if desired. Unfortunately, I don't think that our
standard "fake variadics" tools actually work for this; the anonymous
field accessors of tuples are `:tt` for purposes of macro expansion,
which means that you can't simplify away the identifiers by doing
something clever like using recursion (which would work if they were
`:expr`). Maybe someone who knows some incredibly dark magic could chime
in with a better solution.
The expanded impls look like this:
```rust
impl<
T0: StableInterpolate,
T1: StableInterpolate,
T2: StableInterpolate,
T3: StableInterpolate,
T4: StableInterpolate,
> StableInterpolate for (T0, T1, T2, T3, T4)
{
fn interpolate_stable(&self, other: &Self, t: f32) -> Self {
(
<T0 as StableInterpolate>::interpolate_stable(&self.0, &other.0, t),
<T1 as StableInterpolate>::interpolate_stable(&self.1, &other.1, t),
<T2 as StableInterpolate>::interpolate_stable(&self.2, &other.2, t),
<T3 as StableInterpolate>::interpolate_stable(&self.3, &other.3, t),
<T4 as StableInterpolate>::interpolate_stable(&self.4, &other.4, t),
)
}
}
```
## Testing
Expanded macros; it compiles.
## Future
Make a version of the fake variadics workflow that supports this kind of
thing.
0 commit comments