-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathCBGTC.py
366 lines (316 loc) · 12.1 KB
/
CBGTC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
#!/usr/bin/python
# -*- coding: utf-8 -*-
# Simulation of a whole cortico-baso-thalamo-cortical loop (CBGTC)
# author : Benoît Girard <[email protected]>
# 25th September 2009
import math
import random
import numpy
import numpy.random
import basalganglia
import thalamusFC
#-------------------------------------------
class CBGTC:
#-----------------------------------------
def __init__(self,model='CBG',NbChannels=6,opt_params=[]):
self.model = model
self.NbChannels = NbChannels
# creates the BG and Th-FC modules :
self.BG = basalganglia.BasalGanglia(model,NbChannels,opt_params[:18])
self.THFC = thalamusFC.thalamusFC(model,NbChannels,opt_params[18:])
# computes the inhibition at rest : any inhibition below this
# level is considered as partial selection
self.restInhibition = self.getInhibRest(0.001)
print "============="
print model+' model created'
print self.NbChannels,'channels'
print 'Inhibition at rest',self.restInhibition
print "============="
#-----------------------------------------
# updates the model state, integrating over timestep "dt" and salience input "salience",
# using the (very) basic Euler method.
def stepCompute(self,dt,saliences):
inhibs = self.BG.readGPi()
FCout = self.THFC.readFC()
self.BG.stepCompute(dt,saliences,FCout)
self.THFC.stepCompute(dt,saliences,inhibs)
#---------------------------
# simulates the CBGTC for a given number of steps (NbSteps)
# logs the state of the model at each timestep if verbosity[0]=='v'
# returns inhibition levels
def nbStepsCompute(self,dt,NbSteps,saliences,verbosity='stfu'):
for t in range(NbSteps):
self.stepCompute(dt,saliences)
if verbosity[0] == 'v':
self.logAll()
return self.BG.readGPi()
#---------------------------
# simulates the CBGTC loop until convergence of all channels
# i.e. until |GPi(t+dt)-GPi(t)| < threshold
# stops before convergence if t>3s
# logs the state of the model at each timestep if verbosity[0]=='v'
# returns time to convergence and inhibition levels
def CvgCompute(self,dt,threshold,saliences,verbosity='stfu'):
t = dt
self.stepCompute(dt,saliences)
if verbosity[0] == 'v':
self.logAll()
cvg = False
while ((cvg == False) or (t<0.1)) and (t<3.0):
t+=dt
inhibs = self.BG.readGPi()
self.stepCompute(dt,saliences)
if verbosity[0] == 'v':
self.logAll()
new_inhibs = self.BG.readGPi()
cvg = True
for i in range(len(inhibs)) :
if abs(inhibs[i]-new_inhibs[i]) >= threshold :
cvg = False
break
#print t,new_inhibs
return t,new_inhibs
#---------------------------
# returns the level of inhibition at rest in the GPi, GPe, STN
def getInhibRest(self,dt):
saliences = numpy.zeros((self.NbChannels))
inh = self.nbStepsCompute(dt,1000,saliences,'stfu')
return inh[0]
#-----------------------------------------
# logs the internal state of the loop
# easily visualized with gnuplot : splot 'log/moduleName' matrix with lines
def logAll(self):
self.BG.logAll()
self.THFC.logAll()
#--------------------------------------------------------
# simulates the selection test from the (Gurney et al, 2001b) paper
# returns a score between 0 and 1, depending on the completion of the success criteria
# verbosity 'v' logs internal state
# verbosity 'vv' prints step results on the terminal
def simpleTest(self,dt,verbosity='stfu'):
score = 0
# STEP 1
#--------
saliences = numpy.zeros((self.NbChannels))
inhibs = self.nbStepsCompute(dt,2000,saliences,verbosity)
if inhibs[0] > 0.01:
score += 0.2
if verbosity=='vv':
print 'step 1 : inhibitory output at rest',inhibs[0]
else :
if verbosity=='vv':
print 'step 1 : no inhibitory output at rest'
# STEP 2
#--------
saliences[0] = 0.4
inhibs = self.nbStepsCompute(dt,2000,saliences,verbosity)
if (inhibs[0] < self.restInhibition) and (inhibs[1] >= self.restInhibition):
score += 0.2
if verbosity=='vv':
print 'step 2 : channel 1 selected'
else :
if verbosity=='vv':
print 'step 2 : channel 1 not selected'
# STEP 3
#--------
saliences[1] = 0.6
inhibs = self.nbStepsCompute(dt,2000,saliences,verbosity)
if (inhibs[0] > inhibs[1]) and (inhibs[1] < self.restInhibition) :
score+=0.1
if inhibs[0] >= self.restInhibition:
score+=0.1
if verbosity=='vv':
print 'step 3 : Channel 2 selected alone'
else:
if verbosity=='vv':
print 'step 3 : Channel 2 more selected than channel 1'
else:
if verbosity=='vv':
print 'step 3 : Channel 2 not selected, or channel 1 more selected than channel 2'
# STEP 4
#--------
saliences[0] = 0.6
inhibs = self.nbStepsCompute(dt,2000,saliences,verbosity)
if (inhibs[0] < self.restInhibition) and (inhibs[1] < self.restInhibition):
score+=0.1
if (inhibs[0]-inhibs[1]<0.005):
score+=0.1
if verbosity=='vv':
print 'step 4 : Channels 1 and 2 similarly selected'
else:
if verbosity=='vv':
print 'step 4 : Channels 1 or 2 not similarly selected'
else:
if verbosity=='vv':
print 'step 4 : Channels 1 or 2 not selected'
# STEP 5
#--------
saliences[0] = 0.4
inhibs = self.nbStepsCompute(dt,2000,saliences,verbosity)
if (inhibs[0] > inhibs[1]) and (inhibs[1] < self.restInhibition) :
score+=0.1
if inhibs[0] >= self.restInhibition:
score+=0.1
if verbosity=='vv':
print 'step 5 : Channel 2 selected alone'
else:
if verbosity=='vv':
print 'step 5 : Channel 2 more selected than channel 1'
else:
if verbosity=='vv':
print 'step 5 : Channel 2 not selected, or channel 1 more selected than channel 2'
return score
#-------------------------------------------------------
# Computes the multiple successive vectors test
#
# * score[0] evaluates the capacity of the system of selecting the
# channel with the highest input
# * score[1] evaluates the capacity of the system of separating the
# channel with the highest input from the channel with the second
# highest input
# * score[2] evaluates the amplification of the salience signal in the
# winning FC channel
# * score[3] evaluates the contrast of amplification between highest and second highest input
# * score[4] is the average time of convergence
# * score[5] is an histogram of the time of convergence (values longer than 1s are grouped in the last bin)
def TwoHundredMotelsTest(self,dt, steps, verbosity='stfu'):
score = [0.,0.,0.,0.,0.,numpy.zeros((100))]
numpy.random.seed(17) # you may change the seed at your convenience
for i in range(steps):
saliences = numpy.random.random_sample((self.NbChannels))
tcvg, inhibs = self.CvgCompute(dt,1e-5,saliences,'stfu')
score[4] += tcvg
score[5][min(int(tcvg*100.),99)]+=1
#-----------------------------------------
max1 = 0. # maximum salience
max2 = 0. # second maximum
i1 = [] # list of the indexes of the salience maximum in the salience vector
i2 = [] # the same for the second maximum
for j in range(len(saliences)):
if saliences[j]>max1:
max2 = max1
i2 = i1
max1 = saliences[j]
i1 = [j]
elif saliences[j] == max1:
i1.append(j)
elif saliences[j]>max2:
max2 = saliences[j]
i2 = [j]
elif saliences[j] == max2:
i2.append(j)
if verbosity=='vv':
print '---------------------------'
print 'Step :',i
print 'Saliences :',saliences
print 'Inhibitions :',inhibs
print 'FC :',self.THFC.readFC()
print 'Amplification Contrast :', ((float(self.THFC.readFC()[i1[0]]-max1) / max1) - (float(self.THFC.readFC()[i2[0]]-max2) / max2))/ (float(self.THFC.readFC()[i1[0]]-max1) / max1)
#-----------------------------------------
if (saliences.max() < self.restInhibition) :
score[0] += 1.
score[1] += 1.
else:
for m1 in i1:
if (inhibs[m1]<self.restInhibition) and (inhibs[saliences.argmin()]>inhibs[m1]):
score[0] += 1. / len(i1)
for m2 in i2:
#print inhibs, min(max(0.,(inhibs[m2]-inhibs[m1])/(self.restInhibition-inhibs[m1])),1) / (len(i1)*len(i2))
score[1] += min(max(0.,(inhibs[m2]-inhibs[m1])/(self.restInhibition-inhibs[m1])),1) / (len(i1)*len(i2))
if (max1>0.) and (max2>0.) and (score[2]>0.) :
score[3] += ( (float(self.THFC.readFC()[m1]-max1) / max1)
- (float(self.THFC.readFC()[m2]-max2) / max2)
) \
/ (len(i1)*len(i2)) \
/ (float(self.THFC.readFC()[m1]-max1) / max1)
if max1>0. :
score[2] += float(self.THFC.readFC()[m1]-max1) / max1 / len(i1)
if verbosity[0]=='v':
print '=============================='
print 'Selection of the max input:',score[0]/steps
print 'Selection contrast: ',score[1]/steps
print 'Amplification of the max: ',score[2]/steps
print 'Amplification Contrast: ',score[3]/steps
print 'T cvg: ',score[4]*1000./steps
return score[0]/steps, score[1]/steps, score[2]/steps, score[3]/steps, score[4]/steps, score[5]/steps
#---------------------------
# computes selection efficiency as in the test defined in (Prescott et al 2006 Neural Netw)
def evaluate2ChannelsCompetition(self,dt):
nbsteps = 21
e1=numpy.zeros((nbsteps,nbsteps))
e2=numpy.zeros((nbsteps,nbsteps))
saliences = numpy.zeros((self.NbChannels))
for c1 in range(0,nbsteps):
print 'column',c1
for c2 in range(0,nbsteps):
saliences[0]= c1/float(nbsteps-1)
saliences[1]= c2/float(nbsteps-1)
tcvg, inhibs = self.CvgCompute(dt,1e-5,saliences,'stfu')
#inhibs = self.nbStepsCompute(dt,2000,saliences,'stfu')
e1[c1,c2] = min(1,max(1 - inhibs[0]/self.restInhibition,0))
e2[c1,c2] = min(1,max(1 - inhibs[1]/self.restInhibition,0))
f1 = open('log/e1_'+self.model,'w')
f1.writelines(' '.join([str(e1[i,j]) for i in range(0,nbsteps)]) + '\n' for j in range(0,nbsteps))
f1.close()
f2 = open('log/e2_'+self.model,'w')
f2.writelines(' '.join([str(e2[i,j]) for i in range(0,nbsteps)]) + '\n' for j in range(0,nbsteps))
f2.close()
#=========================================
def main():
#=========================================
dt = 0.001
NbChannels = 6
modeltype = 'CBG' # change this to GPR to simulate (Prescott et al, 2006) model
if modeltype == 'CBG':
myCBGTC = CBGTC(modeltype,NbChannels)
else:
myCBGTC = CBGTC('GPR')
myCBGTC.simpleTest(dt,'vv')
#myCBGTC.TwoHundredMotelsTest(dt,200,'v')
#myCBGTC.evaluate2ChannelsCompetition(dt) # can be pretty long
exit()
#=========================================
# CBGcustom models can be derived from the following original CBG parameters :
#=========================================
CBGparams = [
0.9, # S -> D1/D2 synaptic weight
0.1, # FC -> D1/D2 synaptic weight
0.09, # S -> FS
0.01, # FC -> FS
0.7, # STN -> GPE/GPi
0.45, # GPe -> STN
1., # GPe -> D1
1., # GPe -> D2
0.05, # GPe -> FS
0.08, # GPe -> GPi
0.4, # D1 -> GPe
0.4, # D1 -> GPi
0.4, # D2 -> GPe
0.5, # FS -> D1/D2
0.58, # FC -> STN
0.1, # -I_D1/D2
0.5, # I_STN
0.1, # I_GPe/GPi
0.18, # BG-> Th
0.6, # FC -> Th
0.35, # FC -> TRN
0.6, # Th -> FC
0.35, # Th -> TRN
0.35, # TRN -> Th
0.1 # I_Th
] * numpy.ones([25])
model = 'customCBG'
customCBG = CBGTC(model,6,CBGparams)
customCBG.simpleTest(dt,'v')
exit()
#---------------------------
if __name__ == '__main__':
# Import Psyco if available
try:
import psyco
psyco.log()
psyco.profile()
psyco.full()
except ImportError:
print 'Psyco not available.'
main()