-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsudoku.py
450 lines (385 loc) · 13.2 KB
/
sudoku.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
"""
Copyright (c) 2009, Ben Moran
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
* Neither the name of Ben Moran nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-- This is a re-implementation of the "Linear systems Sudoku solver" from http://www.it.uu.se/katalog/praba420/Sudoku.pdf
"""
from math import sqrt
from cvxmod import problem, minimize, optvar, ones, speye, diag
from cvxmod.atoms import norm1
import cvxopt
import cvxopt.solvers
matrix = cvxopt.base.matrix
def eye(N):
"""
Return the identity matrix of size NxN.
"""
return matrix([ [0]*i + [1] + [0]*(N-i-1) for i in range(N)], (N,N), 'd')
def ones_v(n):
"""
Return the column vector of ones of length n.
"""
return matrix(1, (n,1), 'd')
def zeros_v(n):
"""
Return the column vector of zeroes of length n.
"""
return matrix(0, (n,1), 'd')
def concathoriz(m1, m2):
"""
Concatenate two matrices horizontally.
>>> print concathoriz(eye(3),eye(3))
[ 1.000 0.000 0.000 1.000 0.000 0.000]
[ 0.000 1.000 0.000 0.000 1.000 0.000]
[ 0.000 0.000 1.000 0.000 0.000 1.000]
<BLANKLINE>
"""
r1, c1 = m1.size
r2, c2 = m2.size
if r1 != r2:
raise TypeError('Heights don''t match, %d and %d' % (r1,r2))
return matrix(list(m1)+list(m2), (r1,c1+c2), 'd')
def concatvert(m1,m2):
"""
Concatenate two matrices vertically.
>>> print concatvert(eye(3),eye(3))
[ 1.000 0.000 0.000]
[ 0.000 1.000 0.000]
[ 0.000 0.000 1.000]
[ 1.000 0.000 0.000]
[ 0.000 1.000 0.000]
[ 0.000 0.000 1.000]
<BLANKLINE>
"""
r1, c1 = m1.size
r2, c2 = m2.size
if c1 != c2:
raise TypeError('Widths don''t match, %d and %d' % (c1, c2))
return concathoriz(m1.trans(), m2.trans()).trans()
def sample():
"""
Return a sample Problem instance.
"""
return Problem(
"...15..7."
"1.6...82."
"3..86..4."
"9..4..567"
"..47.83.."
"732..6..4"
".4..81..9"
".17...2.8"
".5..37...")
def sample_hard():
"""
Return a sample Problem instance.
"""
return Problem(
"4.....8.5"
".3......."
"...7....."
".2.....6."
"....8.4.."
"....1...."
"...6.3.7."
"5..2....."
"1.4......")
def sample_tricky():
"""
Return a "tricky" Problem instance from the paper.
"""
return Problem(
"..3..9.81"
"...2...6."
"5...1.7.."
"89......."
"..56.12.."
".......37"
"..9..2..8"
".7...4..."
"25.8..6..")
def sample_moderate():
"""
Return a "moderate" Problem instance from the paper.
"""
return Problem(
"..5...7.."
"93.5.4..."
"84.....3."
"6...2.4.."
"5...9...8"
"..9.8...1"
".5.....7."
"...3.7.86"
"..1...9..")
class Problem:
"""
Translates between different representations of a Sudoku problem.
"""
def __str__(self):
return unicode(self)
def __unicode__(self):
s = ""
boxsize = self.get_box_size()
if boxsize:
inserts = range(self.N - boxsize, 0, -boxsize)
for i in xrange(0,self.N):
row = self.entries[i*self.N:(i+1)*self.N]
row = [unicode(e) if e else '_' for e in row]
if boxsize:
for ix in inserts:
row.insert(ix, "|")
s += " ".join(row) + "\n"
if boxsize and (i+1) in inserts:
s += "+-".join(["--" * boxsize] * boxsize) + "\n"
return s
def __init__(self, entries, N=9):
ok = False
try:
iter(entries)
if len(entries) == N**2:
ok = True
except TypeError:
ok = False
if not ok:
msg = "Entries should be an iterable of length %d for N=%d"
raise ValueError(msg % (N**2, N))
self.N = N
if isinstance(entries, basestring):
self.entries = [int(x) if x.isdigit() else None for x in entries]
else:
self.entries = entries
def num_entries(self):
"""
Return the number of completed entries.
"""
return len([e for e in self.entries if e])
def matrix(self,
all_cells=False,
row_digits=False,
col_digits=False,
box_digits=False,
clues=False):
"""
Build the problem matrix.
"""
tests = (all_cells, row_digits, col_digits, box_digits, clues)
test_all = not any(tests)
Acols = self.N**3
M = matrix(0, (0,Acols), 'd')
if all_cells or test_all:
M = concatvert(M, self.get_all_cells_matrix())
if row_digits or test_all:
M = concatvert(M, self.get_row_digits_matrix())
if col_digits or test_all:
M = concatvert(M, self.get_col_digits_matrix())
if self.get_box_size() and (box_digits or test_all):
M = concatvert(M, self.get_box_digits_matrix())
if clues or test_all:
M = concatvert(M, self.get_clues_matrix())
return M
def get_all_cells_matrix(self):
"""
Return the matrix that checks each cell is filled.
"""
M = matrix(0,(self.N**2,self.N**3), 'd')
for i in xrange(self.N**2):
M[i, self.N*i:self.N*(i+1)] = 1
return M
def get_row_digits_matrix(self):
"""
Return the matrix that checks each row contains
all digits.
"""
N = self.N
M = matrix(0, (N**2,N**3), 'd')
eyes = reduce(concathoriz, [eye(N)] * N)
# I I I 0 0 0 0 0 0
# 0 0 0 I I I 0 0 0
# 0 0 0 0 0 0 I I I
for i in xrange(N):
M[ N*i: N*i+N , (N**2)*i : (N**2)*(i+1) ] = eyes
return M
def get_col_digits_matrix(self):
"""
Return the matrix that checks each column contains
all digits.
"""
N = self.N
M = matrix(0, (N**2,N**3), 'd')
# I 0 0 I 0 0 I 0 0
# 0 I 0 0 I 0 0 I 0
# 0 0 I 0 0 I 0 0 I
return reduce(concathoriz, [eye(N**2)] * N)
def get_box_digits_matrix(self):
"""
Return the matrix that checks each sqrt(N) box contains
all digits.
"""
N = self.N
M = matrix(0, (N**2,N**3), 'd')
for ix, cells in enumerate(self.get_box_defs()):
for cell in cells:
M[ N*ix: N*ix+N , N*cell : N*(cell+1) ] = eye(N)
return M
def get_box_size(self):
"""
Return the size of sub-boxes, sqrt(N), if applicable.
"""
boxsize = int(sqrt(self.N))
if boxsize > 1 and self.N == boxsize**2:
return boxsize
return 0
def get_box_defs(self):
"""
Return the numbers of cells in the NxN grid
corresponding to non-overlapping squares of
size sqrt(N)xsqrt(N)
"""
N = self.N
boxsize = self.get_box_size()
boxes = []
for boxnum in xrange(N):
bx = boxnum/boxsize
by = boxnum % boxsize
boxes.append([i+(bx*boxsize)+N*(j+by*boxsize)
for i in range(boxsize)
for j in range(boxsize)])
return boxes
def to_indicator_vector(self):
"""
Build the indicator vector, each N entries
indicates N possible values for each cell
"""
Acols = self.N**3
v = matrix(0, (Acols,1), 'd')
for ix, e in enumerate(self.entries):
if e:
v[ix*self.N + e-1] = 1
return v
@classmethod
def from_indicator_vector(cls, v):
"""
Convert an indicator vector to a Problem
instance.
"""
N3 = len(v)
N = int(round(pow(N3, 1/3.0)))
if N**3 != N3:
raise ValueError("Vector must be cube length but is %d" % N3)
def getnum(l):
try:
return list(l).index(1)+1
except ValueError:
return None
for i, e in enumerate(v):
v[i] = int(round(e))
entries = [getnum(v[N*e:N*(e+1)]) for e in range(0,N**2)]
return Problem(entries,N)
def get_clues_matrix(self):
"""
Get the matrix to enforce that the answer is consistent
with the clues.
"""
N = self.N
M = matrix(0, (self.num_entries(),N**3), 'd')
i = 0
for ix, e in enumerate(self.entries):
if e:
M[i, ix*N + e -1] = 1
i += 1
return M
def get_result(self, **kwargs):
"""
Get the problem matrix and multiply it by the
indicator vector.
"""
M = self.matrix(**kwargs)
return M * self.to_indicator_vector()
def solve(self, solvefunc=None, **kwargs):
"""
Return a new Problem instance with
best attempt at solution, using plain L1.
"""
M = self.matrix()
ones = ones_v(M.size[0])
if solvefunc is None:
#solvefunc = solve_iter_reweighted_l1
#solvefunc = solve_plain_l1
solvefunc = solve_plain_l1_cvxmod
solvefunc = solve_rw_l1_cvxmod
#v = solve_plain_l1(M,ones)
v = solvefunc(M,ones)
result = Problem.from_indicator_vector(v)
if not all([e==1 for e in result.get_result()]):
print "Failed"
else:
print "OK"
return result
def solve_plain_l1(A, y, solver='glpk'):
"""
Find x with min l1 such that Ax=y,
using plain L1 minimization
"""
n = A.size[1]
c0 = ones_v(2*n)
G1 = concathoriz(A,-A)
G2 = concathoriz(-A,A)
G3 = -eye(2*n)
G = reduce(concatvert, [G1,G2,G3])
hh = reduce(concatvert, [y, -y, zeros_v(2*n)])
u = cvxopt.solvers.lp(c0, G, hh, solver=solver)
v = u['x'][:n]
return v
def solve_iter_reweighted_l1(A, y, solver='glpk', iters=4):
"""
Find x with min l1 such that Ax=y,
using iteratively reweighted l1 minimization
"""
#Reweighted l1 approach from Candes Wakin and Boyd Enhancing sparsity by reweighted l1 minimization. J. Fourier Anal. Appl., 14 877-905. and http://www.acm.caltech.edu/~emmanuel/papers/rwl1.pdf:
## from http://sites.google.com/site/stephanegchretien/alternatingl1
n = A.size[1]
c0 = ones_v(2*n)
G1 = concathoriz(A,-A)
G2 = concathoriz(-A,A)
G3 = -eye(2*n)
G = reduce(concatvert, [G1,G2,G3])
hh = reduce(concatvert, [y, -y, zeros_v(2*n)])
sol = cvxopt.solvers.lp(c0, G, hh, solver=solver)
doublexlone = sol['x'][:2*n] #.trans()[0]
xlone = concathoriz(eye(n),-eye(n)) * doublexlone
xtmp = doublexlone
for l in range(iters):
#c1u = (abs(doublexlone)+.1)**-1
c1u = (abs(xtmp)+.1)**-1 # should it be this?
sol = cvxopt.solvers.lp(c1u, G, hh)
solstixdt = sol['x'][:2*n] #.trans()[0]
xlone = concathoriz(eye(n),-eye(n)) * solstixdt
xtmp = solstixdt
v = sol['x'][:n]
return v
def solve_plain_l1_cvxmod(A, y):
x = optvar('x', A.size[1])
p = problem(minimize(norm1(x)), [A*x == y])
p.solve(quiet=True, solver='glpk')
return x.value
def solve_rw_l1_cvxmod(A, y, iters=6):
W = speye(A.size[1])
x = optvar('x', A.size[1])
epsilon = 0.5
for i in range(iters):
last_x = matrix(x.value) if x.value else None
p = problem(minimize(norm1(W*x)), [A*x == y])
p.solve(quiet=True, cvxoptsolver='glpk')
ww = abs(x.value) + epsilon
W = diag(matrix([1/w for w in ww]))
if last_x:
err = ( (last_x - x.value).T * (last_x - x.value) )[0]
if err < 1e-4:
break
return x.value
# TODO: IRLS, Alternating L1