-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvectorize.py
80 lines (61 loc) · 2.25 KB
/
vectorize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from gensim.test.utils import common_texts
from gensim.models.doc2vec import Doc2Vec, TaggedDocument
from sklearn import utils
import csv
import multiprocessing
import nltk
from nltk.corpus import stopwords
import twitter
from .reference/classify_util import get_polarization
from sklearn.manifold import TSNE
from sklearn.datasets import load_digits
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.decomposition import PCA
import numpy as np
from mpl_toolkits import mplot3d
import json
import numpy as np
from __future__ import print_function
import sys
# change default encoding to account for accents.
stdout = sys.stdout
sys.setdefaultencoding('utf-8')
sys.stdout = stdout
# extract document vectors + types.
n = len(documents)
ids = [x for x in range(1,n+1)]
cind_types = [type_dict[x] for x in range(1,n+1)]
cind_X = model_dbow[ids]
# retrieved from http://www.cs.jhu.edu/~mdredze/datasets/multiview_embeddings/.
# not present on Git repo; file too large.
USER_GRAPH_FILE = "./data/user_graph"
pol_model = Doc2Vec.load("./out/pol_model")
pop_model = Doc2Vec.load("./out/pop_model")
class UserEmbedding(object):
def __init__(self, handle):
self.handle = handle
self.tweets = self.get_tweets(handle)
self.pol_vector = pol_model.infer_vector(tweets, epochs=10)
self.pop_vector = pop_model.infer_vector(tweets, epochs=10)
self.user_vector = [0 for _ in range(45)] # initialize as empty 45-vector.
with open(USER_GRAPH_FILE) as graph:
self.user_vector = graph.lookup(handle)
self.final_vector = np.add(user_vector, np.add(pol_vector, pop_vector))
flat_tweets = [t for s in tweets for t in s]
self.sent = get_polarization(flat_tweets)
def get_tweets(handle)
tweets = []
separate = "https"
for tweet in api.GetUserTimeline(screen_name=handle, count=200):
t = tweet.full_text
t_new = t.split(separate, 1)[0] # Remove "https" tag.
t_new = sanitize_tweet(t_new)
tweets.append(t_new)
return tweets
if __name__ == "__main__":
if len(sys.argv) != 2:
print("Usage: python3 vectorize.py HANDLE")
handle = sys.argv[1].strip('@')
e = UserEmbedding(handle)
# print(e.final_vector)