-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathyoneda.v
297 lines (216 loc) · 7.66 KB
/
yoneda.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
(** **********************************************************
Benedikt Ahrens, Chris Kapulkin, Mike Shulman
january 2013
************************************************************)
(** **********************************************************
Contents : Definition of opposite category
Definition of the Yoneda functor
[yoneda(C) : [C, [C^op, HSET]]]
Proof that [yoneda(C)] is fully faithful
************************************************************)
Require Import Foundations.Generalities.uu0.
Require Import Foundations.hlevel1.hProp.
Require Import Foundations.hlevel2.hSet.
Require Import RezkCompletion.pathnotations.
Import RezkCompletion.pathnotations.PathNotations.
Require Import RezkCompletion.auxiliary_lemmas_HoTT.
Require Import RezkCompletion.precategories.
Require Import RezkCompletion.category_hset.
Require Import RezkCompletion.functors_transformations.
(*Local Notation "a --> b" := (precategory_morphisms a b)(at level 50).*)
Local Notation "'hom' C" := (precategory_morphisms (C := C)) (at level 2).
Local Notation "f ;; g" := (compose f g)(at level 50).
Local Notation "[ C , D ]" := (functor_precategory C D).
Local Notation "# F" := (functor_on_morphisms F)(at level 3).
Local Notation "x ,, y" := (tpair _ x y) (at level 69, right associativity).
Ltac pathvia b := (apply (@pathscomp0 _ _ b _ )).
(** * The opposite precategory of a precategory *)
Definition opp_precat_ob_mor (C : precategory_ob_mor) : precategory_ob_mor :=
tpair (fun ob : UU => ob -> ob -> hSet) (ob C)
(fun a b : ob C => hom C b a ).
Definition opp_precat_data (C : precategory_data) : precategory_data.
Proof.
exists (opp_precat_ob_mor C).
split.
exact (fun c => identity c).
simpl.
intros a b c f g.
exact (g ;; f).
Defined.
Hint Unfold identity.
Ltac unf := unfold identity,
compose,
precategory_morphisms;
simpl.
Lemma is_precat_opp_precat_data (C : precategory) : is_precategory (opp_precat_data C).
Proof.
repeat split; simpl.
intros. unf.
apply id_right.
intros; unf.
apply id_left.
intros; unf.
rewrite assoc.
apply idpath.
Qed.
Definition opp_precat (C : precategory) : precategory :=
tpair _ (opp_precat_data C) (is_precat_opp_precat_data C).
Local Notation "C '^op'" := (opp_precat C) (at level 3).
Definition opp_iso {C:precategory} {a b:ob C} : @iso C a b -> @iso C^op b a.
intro f.
exact (pr1 f,,pr1 (pr2 f),,pr2 (pr2 (pr2 f)),,pr1 (pr2 (pr2 f))).
Defined.
Lemma iso_comp_left_isweq {C:precategory} {a b:ob C} (h:iso a b) (c:C) :
isweq (fun f : hom _ c a => f ;; h).
Proof. intros. apply (@iso_comp_right_isweq C^op b a (opp_iso h)). Qed.
(** * Yoneda functor *)
(** ** On objects *)
Definition yoneda_objects_ob (C : precategory) (c : C)
(d : C) := hom C d c.
Definition yoneda_objects_mor (C : precategory) (c : C)
(d d' : C) (f : hom C d d') :
yoneda_objects_ob C c d' -> yoneda_objects_ob C c d :=
fun g => f ;; g.
Definition yoneda_ob_functor_data (C : precategory) (c : C) :
functor_data (C^op) HSET.
Proof.
exists (yoneda_objects_ob C c).
intros a b f g. unfold yoneda_objects_ob in *. simpl in *.
exact (f ;; g).
Defined.
Lemma is_functor_yoneda_functor_data (C : precategory) (c : C) :
is_functor (yoneda_ob_functor_data C c).
Proof.
repeat split; unf; simpl.
intros.
apply funextsec.
intro f. unf. apply id_left.
intros a b d f g.
apply funextsec. intro h.
apply (! assoc _ _ _ _ _ _ _ _ ).
Qed.
Definition yoneda_objects (C : precategory) (c : C) :
functor C^op HSET :=
tpair _ _ (is_functor_yoneda_functor_data C c).
(** ** On morphisms *)
Definition yoneda_morphisms_data (C : precategory)(c c' : C)
(f : hom C c c') : forall a : ob C^op,
hom _ (yoneda_objects C c a) ( yoneda_objects C c' a) :=
fun a g => g ;; f.
Lemma is_nat_trans_yoneda_morphisms_data (C : precategory)
(c c' : ob C) (f : hom C c c') :
is_nat_trans (yoneda_objects C c) (yoneda_objects C c')
(yoneda_morphisms_data C c c' f).
Proof.
unfold is_nat_trans; simpl.
unfold yoneda_morphisms_data; simpl.
intros d d' g.
apply funextsec; simpl in *.
unfold yoneda_objects_ob; simpl.
unf; intro;
apply ( ! assoc _ _ _ _ _ _ _ _ ).
Qed.
Definition yoneda_morphisms (C : precategory) (c c' : C)
(f : hom C c c') : nat_trans (yoneda_objects C c) (yoneda_objects C c') :=
tpair _ _ (is_nat_trans_yoneda_morphisms_data C c c' f).
Definition yoneda_functor_data (C : precategory):
functor_data C [C^op , HSET] :=
tpair _ (yoneda_objects C) (yoneda_morphisms C).
(** ** Functorial properties of the yoneda assignments *)
Lemma is_functor_yoneda (C : precategory) :
is_functor (yoneda_functor_data C).
Proof.
unfold is_functor.
repeat split; simpl.
intro a; apply nat_trans_eq; simpl.
unfold yoneda_morphisms_data, yoneda_objects_ob.
intro c; apply funextsec; intro f.
apply id_right.
intros a b c f g.
apply nat_trans_eq.
unfold yoneda_morphisms_data, yoneda_objects_ob.
simpl; intro d; apply funextsec; intro h.
apply assoc.
Qed.
Definition yoneda (C : precategory) : functor C [C^op, HSET] :=
tpair _ _ (is_functor_yoneda C).
(* Notation "'ob' F" := (precategory_ob_mor_fun_objects F)(at level 4). *)
(** ** Yoneda lemma: natural transformations from [yoneda C c] to [F]
are isomorphic to [F c] *)
Definition yoneda_map_1 (C : precategory)(c : C)
(F : functor C^op HSET) :
hom _ (yoneda C c) F -> pr1 (F c) :=
fun h => pr1 h c (identity c).
Lemma yoneda_map_2_ax (C : precategory)(c : C)
(F : functor C^op HSET) (x : pr1 (F c)) :
is_nat_trans (pr1 (yoneda C c)) F
(fun (d : C) (f : hom (C ^op) c d) => #F f x).
Proof.
intros a b f; simpl in *.
apply funextsec.
unfold yoneda_objects_ob; intro g.
set (H:= functor_comp F _ _ b g).
unfold functor_comp in H;
unfold opp_precat_data in H;
simpl in *.
apply (toforallpaths _ _ _ (H f) x).
Qed.
Definition yoneda_map_2 (C : precategory)(c : C)
(F : functor C^op HSET) :
pr1 (F c) -> hom _ (yoneda C c) F.
Proof.
intro x.
exists (fun d : ob C => fun f => #F f x).
apply yoneda_map_2_ax.
Defined.
Lemma yoneda_map_1_2 (C : precategory)(c : C)
(F : functor C^op HSET)
(alpha : hom _ (yoneda C c) F) :
yoneda_map_2 _ _ _ (yoneda_map_1 _ _ _ alpha) == alpha.
Proof.
simpl in *; apply nat_trans_eq; intro a'; simpl.
apply funextsec; intro f.
unfold yoneda_map_1.
pathvia ((alpha c ;; #F f) (identity c)).
apply idpath.
rewrite <- nat_trans_ax.
unf; apply maponpaths.
apply (id_right C a' c f ).
Qed.
Lemma yoneda_map_2_1 (C : precategory) (c : C)
(F : functor C^op HSET) (x : pr1 (F c)) :
yoneda_map_1 _ _ _ (yoneda_map_2 _ _ _ x) == x.
Proof.
simpl.
rewrite (functor_id F).
apply idpath.
Qed.
Lemma yoneda_iso_sets (C : precategory) (c : C)
(F : functor C^op HSET) :
is_isomorphism (C:=HSET) (a := hom _ ((yoneda C) c) F) (b := F c)
(yoneda_map_1 C c F).
Proof.
exists (yoneda_map_2 C c F).
repeat split; simpl.
apply funextsec; intro alpha.
unf; simpl.
apply (yoneda_map_1_2 C c F).
apply funextsec; intro x.
unf; rewrite (functor_id F).
apply idpath.
Defined.
(** ** The Yoneda embedding is fully faithful *)
Lemma yoneda_fully_faithful (C : precategory) : fully_faithful (yoneda C).
Proof.
intros a b; simpl.
assert (eximio : yoneda_morphisms C a b == yoneda_map_2 C a (yoneda C b)).
- apply funextsec; intro f.
apply nat_trans_eq; intro c; simpl.
apply funextsec; intro g.
apply idpath.
- rewrite eximio.
apply (gradth _
(yoneda_map_1 C a (pr1 (yoneda C) b))).
intro; apply yoneda_map_2_1.
intro; apply yoneda_map_1_2.
Qed.