-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrezk_completion.v
132 lines (83 loc) · 3.08 KB
/
rezk_completion.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
(** **********************************************************
Benedikt Ahrens, Chris Kapulkin, Mike Shulman
january 2013
************************************************************)
(** **********************************************************
Contents : Rezk completion
- Construction of the Rezk completion via Yoneda
- Universal property of the Rezk completion
************************************************************)
Require Import Foundations.Generalities.uu0.
Require Import Foundations.hlevel1.hProp.
Require Import Foundations.hlevel2.hSet.
Require Import RezkCompletion.pathnotations.
Import RezkCompletion.pathnotations.PathNotations.
Require Import RezkCompletion.auxiliary_lemmas_HoTT.
Require Import RezkCompletion.precategories.
Require Import RezkCompletion.functors_transformations.
Require Import RezkCompletion.category_hset.
Require Import RezkCompletion.yoneda.
Require Import RezkCompletion.sub_precategories.
Require Import RezkCompletion.equivalences.
Require Import RezkCompletion.whiskering.
Require Import RezkCompletion.precomp_fully_faithful.
Require Import RezkCompletion.precomp_ess_surj.
Ltac pathvia b := (apply (@pathscomp0 _ _ b _ )).
(** * Construction of the Rezk completion via Yoneda *)
Section rezk.
Variable A : precategory.
Definition Rezk_completion : category.
Proof.
exists (full_img_sub_precategory (yoneda A)).
apply is_category_full_subcat.
apply is_category_functor_category.
apply is_category_HSET.
Defined.
Definition Rezk_eta : functor A Rezk_completion.
Proof.
apply (functor_full_img (yoneda A)).
Defined.
Lemma Rezk_eta_is_fully_faithful : fully_faithful Rezk_eta.
Proof.
apply (functor_full_img_fully_faithful_if_fun_is _ _ (yoneda A)).
apply yoneda_fully_faithful.
Qed.
Lemma Rezk_eta_essentially_surjective : essentially_surjective Rezk_eta.
Proof.
apply (functor_full_img_essentially_surjective _ _ (yoneda A)).
Qed.
End rezk.
(** * Universal property of the Rezk completion *)
Section rezk_universal_property.
Variables A C : precategory.
Hypothesis Ccat : is_category C.
Lemma pre_comp_rezk_eta_is_fully_faithful :
fully_faithful (pre_composition_functor A (Rezk_completion A) C (Rezk_eta A)).
Proof.
apply pre_composition_with_ess_surj_and_fully_faithful_is_fully_faithful.
apply Rezk_eta_essentially_surjective.
apply Rezk_eta_is_fully_faithful.
Qed.
Lemma pre_comp_rezk_eta_is_ess_surj :
essentially_surjective (pre_composition_functor A (Rezk_completion A) C (Rezk_eta A)).
Proof.
apply pre_composition_essentially_surjective.
assumption.
apply Rezk_eta_essentially_surjective.
apply Rezk_eta_is_fully_faithful.
Qed.
Theorem Rezk_eta_Universal_Property :
isweq (pre_composition_functor A (Rezk_completion A) C (Rezk_eta A)).
Proof.
apply equiv_of_cats_is_weq_of_objects.
apply is_category_functor_category;
assumption.
apply is_category_functor_category;
assumption.
apply rad_equivalence_of_precats.
apply is_category_functor_category;
assumption.
apply pre_comp_rezk_eta_is_fully_faithful.
apply pre_comp_rezk_eta_is_ess_surj.
Qed.
End rezk_universal_property.