-
Notifications
You must be signed in to change notification settings - Fork 182
/
Copy pathtry_convnet_cc_multirotflip_3x69r45_normconstraint.py
437 lines (318 loc) · 17.4 KB
/
try_convnet_cc_multirotflip_3x69r45_normconstraint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
import numpy as np
# import pandas as pd
import theano
import theano.tensor as T
import layers
import cc_layers
import custom
import load_data
import realtime_augmentation as ra
import time
import csv
import os
import cPickle as pickle
from datetime import datetime, timedelta
# import matplotlib.pyplot as plt
# plt.ion()
# import utils
BATCH_SIZE = 16
NUM_INPUT_FEATURES = 3
LEARNING_RATE_SCHEDULE = {
0: 0.04,
1800: 0.004,
2300: 0.0004,
}
MOMENTUM = 0.9
WEIGHT_DECAY = 0.0
CHUNK_SIZE = 10000 # 30000 # this should be a multiple of the batch size, ideally.
NUM_CHUNKS = 2500 # 3000 # 1500 # 600 # 600 # 600 # 500
VALIDATE_EVERY = 20 # 12 # 6 # 6 # 6 # 5 # validate only every 5 chunks. MUST BE A DIVISOR OF NUM_CHUNKS!!!
# else computing the analysis data does not work correctly, since it assumes that the validation set is still loaded.
NUM_CHUNKS_NONORM = 1 # train without normalisation for this many chunks, to get the weights in the right 'zone'.
# this should be only a few, just 1 hopefully suffices.
GEN_BUFFER_SIZE = 1
# # need to load the full training data anyway to extract the validation set from it.
# # alternatively we could create separate validation set files.
# DATA_TRAIN_PATH = "data/images_train_color_cropped33_singletf.npy.gz"
# DATA2_TRAIN_PATH = "data/images_train_color_8x_singletf.npy.gz"
# DATA_VALIDONLY_PATH = "data/images_validonly_color_cropped33_singletf.npy.gz"
# DATA2_VALIDONLY_PATH = "data/images_validonly_color_8x_singletf.npy.gz"
# DATA_TEST_PATH = "data/images_test_color_cropped33_singletf.npy.gz"
# DATA2_TEST_PATH = "data/images_test_color_8x_singletf.npy.gz"
TARGET_PATH = "predictions/final/try_convnet_cc_multirotflip_3x69r45_normconstraint.csv"
ANALYSIS_PATH = "analysis/final/try_convnet_cc_multirotflip_3x69r45_normconstraint.pkl"
# FEATURES_PATTERN = "features/try_convnet_chunked_ra_b3sched.%s.npy"
print "Set up data loading"
# TODO: adapt this so it loads the validation data from JPEGs and does the processing realtime
input_sizes = [(69, 69), (69, 69)]
ds_transforms = [
ra.build_ds_transform(3.0, target_size=input_sizes[0]),
ra.build_ds_transform(3.0, target_size=input_sizes[1]) + ra.build_augmentation_transform(rotation=45)
]
num_input_representations = len(ds_transforms)
augmentation_params = {
'zoom_range': (1.0 / 1.3, 1.3),
'rotation_range': (0, 360),
'shear_range': (0, 0),
'translation_range': (-4, 4),
'do_flip': True,
}
augmented_data_gen = ra.realtime_augmented_data_gen(num_chunks=NUM_CHUNKS, chunk_size=CHUNK_SIZE,
augmentation_params=augmentation_params, ds_transforms=ds_transforms,
target_sizes=input_sizes)
post_augmented_data_gen = ra.post_augment_brightness_gen(augmented_data_gen, std=0.5)
train_gen = load_data.buffered_gen_mp(post_augmented_data_gen, buffer_size=GEN_BUFFER_SIZE)
y_train = np.load("data/solutions_train.npy")
train_ids = load_data.train_ids
test_ids = load_data.test_ids
# split training data into training + a small validation set
num_train = len(train_ids)
num_test = len(test_ids)
num_valid = num_train // 10 # integer division
num_train -= num_valid
y_valid = y_train[num_train:]
y_train = y_train[:num_train]
valid_ids = train_ids[num_train:]
train_ids = train_ids[:num_train]
train_indices = np.arange(num_train)
valid_indices = np.arange(num_train, num_train + num_valid)
test_indices = np.arange(num_test)
def create_train_gen():
"""
this generates the training data in order, for postprocessing. Do not use this for actual training.
"""
data_gen_train = ra.realtime_fixed_augmented_data_gen(train_indices, 'train',
ds_transforms=ds_transforms, chunk_size=CHUNK_SIZE, target_sizes=input_sizes)
return load_data.buffered_gen_mp(data_gen_train, buffer_size=GEN_BUFFER_SIZE)
def create_valid_gen():
data_gen_valid = ra.realtime_fixed_augmented_data_gen(valid_indices, 'train',
ds_transforms=ds_transforms, chunk_size=CHUNK_SIZE, target_sizes=input_sizes)
return load_data.buffered_gen_mp(data_gen_valid, buffer_size=GEN_BUFFER_SIZE)
def create_test_gen():
data_gen_test = ra.realtime_fixed_augmented_data_gen(test_indices, 'test',
ds_transforms=ds_transforms, chunk_size=CHUNK_SIZE, target_sizes=input_sizes)
return load_data.buffered_gen_mp(data_gen_test, buffer_size=GEN_BUFFER_SIZE)
print "Preprocess validation data upfront"
start_time = time.time()
xs_valid = [[] for _ in xrange(num_input_representations)]
for data, length in create_valid_gen():
for x_valid_list, x_chunk in zip(xs_valid, data):
x_valid_list.append(x_chunk[:length])
xs_valid = [np.vstack(x_valid) for x_valid in xs_valid]
xs_valid = [x_valid.transpose(0, 3, 1, 2) for x_valid in xs_valid] # move the colour dimension up
print " took %.2f seconds" % (time.time() - start_time)
print "Build model"
l0 = layers.Input2DLayer(BATCH_SIZE, NUM_INPUT_FEATURES, input_sizes[0][0], input_sizes[0][1])
l0_45 = layers.Input2DLayer(BATCH_SIZE, NUM_INPUT_FEATURES, input_sizes[1][0], input_sizes[1][1])
l0r = layers.MultiRotSliceLayer([l0, l0_45], part_size=45, include_flip=True)
l0s = cc_layers.ShuffleBC01ToC01BLayer(l0r)
l1a = cc_layers.CudaConvnetConv2DLayer(l0s, n_filters=32, filter_size=6, weights_std=0.01, init_bias_value=0.1, dropout=0.0, partial_sum=1, untie_biases=True)
l1 = cc_layers.CudaConvnetPooling2DLayer(l1a, pool_size=2)
l2a = cc_layers.CudaConvnetConv2DLayer(l1, n_filters=64, filter_size=5, weights_std=0.01, init_bias_value=0.1, dropout=0.0, partial_sum=1, untie_biases=True)
l2 = cc_layers.CudaConvnetPooling2DLayer(l2a, pool_size=2)
l3a = cc_layers.CudaConvnetConv2DLayer(l2, n_filters=128, filter_size=3, weights_std=0.01, init_bias_value=0.1, dropout=0.0, partial_sum=1, untie_biases=True)
l3b = cc_layers.CudaConvnetConv2DLayer(l3a, n_filters=128, filter_size=3, pad=0, weights_std=0.1, init_bias_value=0.1, dropout=0.0, partial_sum=1, untie_biases=True)
l3 = cc_layers.CudaConvnetPooling2DLayer(l3b, pool_size=2)
l3s = cc_layers.ShuffleC01BToBC01Layer(l3)
j3 = layers.MultiRotMergeLayer(l3s, num_views=4) # 2) # merge convolutional parts
l4a = layers.DenseLayer(j3, n_outputs=4096, weights_std=0.001, init_bias_value=0.01, dropout=0.5, nonlinearity=layers.identity)
l4b = layers.FeatureMaxPoolingLayer(l4a, pool_size=2, feature_dim=1, implementation='reshape')
l4c = layers.DenseLayer(l4b, n_outputs=4096, weights_std=0.001, init_bias_value=0.01, dropout=0.5, nonlinearity=layers.identity)
l4 = layers.FeatureMaxPoolingLayer(l4c, pool_size=2, feature_dim=1, implementation='reshape')
# l5 = layers.DenseLayer(l4, n_outputs=37, weights_std=0.01, init_bias_value=0.0, dropout=0.5, nonlinearity=custom.clip_01) # nonlinearity=layers.identity)
l5 = layers.DenseLayer(l4, n_outputs=37, weights_std=0.01, init_bias_value=0.1, dropout=0.5, nonlinearity=layers.identity)
# l6 = layers.OutputLayer(l5, error_measure='mse')
l6 = custom.OptimisedDivGalaxyOutputLayer(l5) # this incorporates the constraints on the output (probabilities sum to one, weighting, etc.)
train_loss_nonorm = l6.error(normalisation=False)
train_loss = l6.error() # but compute and print this!
valid_loss = l6.error(dropout_active=False)
all_parameters = layers.all_parameters(l6)
all_bias_parameters = layers.all_bias_parameters(l6)
xs_shared = [theano.shared(np.zeros((1,1,1,1), dtype=theano.config.floatX)) for _ in xrange(num_input_representations)]
y_shared = theano.shared(np.zeros((1,1), dtype=theano.config.floatX))
learning_rate = theano.shared(np.array(LEARNING_RATE_SCHEDULE[0], dtype=theano.config.floatX))
idx = T.lscalar('idx')
givens = {
l0.input_var: xs_shared[0][idx*BATCH_SIZE:(idx+1)*BATCH_SIZE],
l0_45.input_var: xs_shared[1][idx*BATCH_SIZE:(idx+1)*BATCH_SIZE],
l6.target_var: y_shared[idx*BATCH_SIZE:(idx+1)*BATCH_SIZE],
}
# updates = layers.gen_updates(train_loss, all_parameters, learning_rate=LEARNING_RATE, momentum=MOMENTUM, weight_decay=WEIGHT_DECAY)
updates_nonorm = layers.gen_updates_nesterov_momentum_no_bias_decay(train_loss_nonorm, all_parameters, all_bias_parameters, learning_rate=learning_rate, momentum=MOMENTUM, weight_decay=WEIGHT_DECAY)
updates = layers.gen_updates_nesterov_momentum_no_bias_decay(train_loss, all_parameters, all_bias_parameters, learning_rate=learning_rate, momentum=MOMENTUM, weight_decay=WEIGHT_DECAY)
train_nonorm = theano.function([idx], train_loss_nonorm, givens=givens, updates=updates_nonorm)
train_norm = theano.function([idx], train_loss, givens=givens, updates=updates)
compute_loss = theano.function([idx], valid_loss, givens=givens) # dropout_active=False
compute_output = theano.function([idx], l6.predictions(dropout_active=False), givens=givens, on_unused_input='ignore') # not using the labels, so theano complains
compute_features = theano.function([idx], l4.output(dropout_active=False), givens=givens, on_unused_input='ignore')
# norm constraint stuff
rescaling_updates = l4a.rescaling_updates(0.4) + l4c.rescaling_updates(0.23) # constants were determined by looking at histograms.
rescale_weights = theano.function([], [], updates=rescaling_updates) # updating only, not computing anything
rescale_every = 10 # rescale the weights only every N updates to save time
print "Train model"
start_time = time.time()
prev_time = start_time
num_batches_valid = x_valid.shape[0] // BATCH_SIZE
losses_train = []
losses_valid = []
param_stds = []
for e in xrange(NUM_CHUNKS):
print "Chunk %d/%d" % (e + 1, NUM_CHUNKS)
chunk_data, chunk_length = train_gen.next()
y_chunk = chunk_data.pop() # last element is labels.
xs_chunk = chunk_data
# need to transpose the chunks to move the 'channels' dimension up
xs_chunk = [x_chunk.transpose(0, 3, 1, 2) for x_chunk in xs_chunk]
if e in LEARNING_RATE_SCHEDULE:
current_lr = LEARNING_RATE_SCHEDULE[e]
learning_rate.set_value(LEARNING_RATE_SCHEDULE[e])
print " setting learning rate to %.6f" % current_lr
# train without normalisation for the first # chunks.
if e >= NUM_CHUNKS_NONORM:
train = train_norm
else:
train = train_nonorm
print " load training data onto GPU"
for x_shared, x_chunk in zip(xs_shared, xs_chunk):
x_shared.set_value(x_chunk)
y_shared.set_value(y_chunk)
num_batches_chunk = x_chunk.shape[0] // BATCH_SIZE
# import pdb; pdb.set_trace()
print " batch SGD"
losses = []
for b in xrange(num_batches_chunk):
# if b % 1000 == 0:
# print " batch %d/%d" % (b + 1, num_batches_chunk)
loss = train(b)
losses.append(loss)
# weight rescaling (norm constraints)
if (b + 1) % rescale_every == 0:
rescale_weights()
mean_train_loss = np.sqrt(np.mean(losses))
print " mean training loss (RMSE):\t\t%.6f" % mean_train_loss
losses_train.append(mean_train_loss)
# store param stds during training
param_stds.append([p.std() for p in layers.get_param_values(l6)])
if ((e + 1) % VALIDATE_EVERY) == 0:
print
print "VALIDATING"
print " load validation data onto GPU"
for x_shared, x_valid in zip(xs_shared, xs_valid):
x_shared.set_value(x_valid)
y_shared.set_value(y_valid)
print " compute losses"
losses = []
for b in xrange(num_batches_valid):
# if b % 1000 == 0:
# print " batch %d/%d" % (b + 1, num_batches_valid)
loss = compute_loss(b)
losses.append(loss)
mean_valid_loss = np.sqrt(np.mean(losses))
print " mean validation loss (RMSE):\t\t%.6f" % mean_valid_loss
losses_valid.append(mean_valid_loss)
now = time.time()
time_since_start = now - start_time
time_since_prev = now - prev_time
prev_time = now
est_time_left = time_since_start * (float(NUM_CHUNKS - (e + 1)) / float(e + 1))
eta = datetime.now() + timedelta(seconds=est_time_left)
eta_str = eta.strftime("%c")
print " %s since start (%.2f s)" % (load_data.hms(time_since_start), time_since_prev)
print " estimated %s to go (ETA: %s)" % (load_data.hms(est_time_left), eta_str)
print
del chunk_data, xs_chunk, x_chunk, y_chunk, xs_valid, x_valid # memory cleanup
print "Compute predictions on validation set for analysis in batches"
predictions_list = []
for b in xrange(num_batches_valid):
# if b % 1000 == 0:
# print " batch %d/%d" % (b + 1, num_batches_valid)
predictions = compute_output(b)
predictions_list.append(predictions)
all_predictions = np.vstack(predictions_list)
# postprocessing: clip all predictions to 0-1
all_predictions[all_predictions > 1] = 1.0
all_predictions[all_predictions < 0] = 0.0
print "Write validation set predictions to %s" % ANALYSIS_PATH
with open(ANALYSIS_PATH, 'w') as f:
pickle.dump({
'ids': valid_ids[:num_batches_valid * BATCH_SIZE], # note that we need to truncate the ids to a multiple of the batch size.
'predictions': all_predictions,
'targets': y_valid,
'mean_train_loss': mean_train_loss,
'mean_valid_loss': mean_valid_loss,
'time_since_start': time_since_start,
'losses_train': losses_train,
'losses_valid': losses_valid,
'param_values': layers.get_param_values(l6),
'param_stds': param_stds,
}, f, pickle.HIGHEST_PROTOCOL)
del predictions_list, all_predictions # memory cleanup
# print "Loading test data"
# x_test = load_data.load_gz(DATA_TEST_PATH)
# x2_test = load_data.load_gz(DATA2_TEST_PATH)
# test_ids = np.load("data/test_ids.npy")
# num_test = x_test.shape[0]
# x_test = x_test.transpose(0, 3, 1, 2) # move the colour dimension up.
# x2_test = x2_test.transpose(0, 3, 1, 2)
# create_test_gen = lambda: load_data.array_chunker_gen([x_test, x2_test], chunk_size=CHUNK_SIZE, loop=False, truncate=False, shuffle=False)
print "Computing predictions on test data"
predictions_list = []
for e, (xs_chunk, chunk_length) in enumerate(create_test_gen()):
print "Chunk %d" % (e + 1)
xs_chunk = [x_chunk.transpose(0, 3, 1, 2) for x_chunk in xs_chunk] # move the colour dimension up.
for x_shared, x_chunk in zip(xs_shared, xs_chunk):
x_shared.set_value(x_chunk)
num_batches_chunk = int(np.ceil(chunk_length / float(BATCH_SIZE))) # need to round UP this time to account for all data
# make predictions for testset, don't forget to cute off the zeros at the end
for b in xrange(num_batches_chunk):
# if b % 1000 == 0:
# print " batch %d/%d" % (b + 1, num_batches_chunk)
predictions = compute_output(b)
predictions_list.append(predictions)
all_predictions = np.vstack(predictions_list)
all_predictions = all_predictions[:num_test] # truncate back to the correct length
# postprocessing: clip all predictions to 0-1
all_predictions[all_predictions > 1] = 1.0
all_predictions[all_predictions < 0] = 0.0
print "Write predictions to %s" % TARGET_PATH
# test_ids = np.load("data/test_ids.npy")
with open(TARGET_PATH, 'wb') as csvfile:
writer = csv.writer(csvfile) # , delimiter=',', quoting=csv.QUOTE_MINIMAL)
# write header
writer.writerow(['GalaxyID', 'Class1.1', 'Class1.2', 'Class1.3', 'Class2.1', 'Class2.2', 'Class3.1', 'Class3.2', 'Class4.1', 'Class4.2', 'Class5.1', 'Class5.2', 'Class5.3', 'Class5.4', 'Class6.1', 'Class6.2', 'Class7.1', 'Class7.2', 'Class7.3', 'Class8.1', 'Class8.2', 'Class8.3', 'Class8.4', 'Class8.5', 'Class8.6', 'Class8.7', 'Class9.1', 'Class9.2', 'Class9.3', 'Class10.1', 'Class10.2', 'Class10.3', 'Class11.1', 'Class11.2', 'Class11.3', 'Class11.4', 'Class11.5', 'Class11.6'])
# write data
for k in xrange(test_ids.shape[0]):
row = [test_ids[k]] + all_predictions[k].tolist()
writer.writerow(row)
print "Gzipping..."
os.system("gzip -c %s > %s.gz" % (TARGET_PATH, TARGET_PATH))
del all_predictions, predictions_list, xs_chunk, x_chunk # memory cleanup
# # need to reload training data because it has been split and shuffled.
# # don't need to reload test data
# x_train = load_data.load_gz(DATA_TRAIN_PATH)
# x2_train = load_data.load_gz(DATA2_TRAIN_PATH)
# x_train = x_train.transpose(0, 3, 1, 2) # move the colour dimension up
# x2_train = x2_train.transpose(0, 3, 1, 2)
# train_gen_features = load_data.array_chunker_gen([x_train, x2_train], chunk_size=CHUNK_SIZE, loop=False, truncate=False, shuffle=False)
# test_gen_features = load_data.array_chunker_gen([x_test, x2_test], chunk_size=CHUNK_SIZE, loop=False, truncate=False, shuffle=False)
# for name, gen, num in zip(['train', 'test'], [train_gen_features, test_gen_features], [x_train.shape[0], x_test.shape[0]]):
# print "Extracting feature representations for all galaxies: %s" % name
# features_list = []
# for e, (xs_chunk, chunk_length) in enumerate(gen):
# print "Chunk %d" % (e + 1)
# x_chunk, x2_chunk = xs_chunk
# x_shared.set_value(x_chunk)
# x2_shared.set_value(x2_chunk)
# num_batches_chunk = int(np.ceil(chunk_length / float(BATCH_SIZE))) # need to round UP this time to account for all data
# # compute features for set, don't forget to cute off the zeros at the end
# for b in xrange(num_batches_chunk):
# if b % 1000 == 0:
# print " batch %d/%d" % (b + 1, num_batches_chunk)
# features = compute_features(b)
# features_list.append(features)
# all_features = np.vstack(features_list)
# all_features = all_features[:num] # truncate back to the correct length
# features_path = FEATURES_PATTERN % name
# print " write features to %s" % features_path
# np.save(features_path, all_features)
print "Done!"