-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhospitalizations.R
234 lines (201 loc) · 9.72 KB
/
hospitalizations.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
library(RSocrata)
library(tidyverse)
library(lubridate)
library(hrbrthemes)
library(runner)
library(geofacet)
hospitalizations = read.socrata("https://healthdata.gov/resource/g62h-syeh.csv")
hospitalizations$date = as.Date(hospitalizations$date)
hospitalizations <-tibble(hospitalizations)
unique(hospitalizations$state)
hospitalizations_wa = subset(hospitalizations,state == 'WA')
ggplot(hospitalizations_wa)+
#geom_line(aes(x=date,y=total_adult_patients_hospitalized_confirmed_and_suspected_covid))+
geom_line(aes(x=date,y=inpatient_beds))
## Hospitalizations for Covid are on the rise
ggplot(hospitalizations_wa)+
geom_line(aes(x=date,y=inpatient_beds_utilization))
ggplot(hospitalizations_wa)+
#geom_line(aes(x=date,y=total_adult_patients_hospitalized_confirmed_and_suspected_covid))+
geom_line(aes(x=date,y=inpatient_bed_covid_utilization))
ggplot(hospitalizations_wa)+
geom_line(aes(x=date,y=inpatient_bed_covid_utilization)) +
geom_line(aes(x=date,y=inpatient_beds_utilization))
hospitalizations_wa %>%
filter(date == max(date)) %>%
select(date,
inpatient_beds,
inpatient_beds_used,
inpatient_beds_utilization,
inpatient_bed_covid_utilization,
percent_of_inpatients_with_covid,
staffed_adult_icu_bed_occupancy,
staffed_icu_adult_patients_confirmed_and_suspected_covid,
total_adult_patients_hospitalized_confirmed_and_suspected_covid)
## Deaths
ggplot(hospitalizations_wa)+
#geom_line(aes(x=date,y=total_adult_patients_hospitalized_confirmed_and_suspected_covid))+
geom_line(aes(x=date,y=deaths_covid))
last_7_days_reported_deaths = sum(subset(hospitalizations_wa,date >= Sys.Date()-7,select=c(date,deaths_covid))$deaths_covid)
## Hospitalizations by age group
hospitalizations_wa %>%
# filter(date>='2021-05-01') %>%
select(c("state","date",starts_with("previous_day_admission_adult_covid"))) %>%
select(-c(ends_with("coverage"),"previous_day_admission_adult_covid_confirmed","previous_day_admission_adult_covid_suspected")) %>%
pivot_longer(cols=starts_with("previous_day_admission_adult_covid"),
names_to="age_range",
values_to = "admissions",
names_prefix = "previous_day_admission_adult_covid_") %>%
separate(age_range,c("type","age_range"),"ed_") %>%
# filter(type != "suspect") %>%
mutate(week_start=floor_date(date,'week')) %>%
group_by(week_start, age_range) %>%
summarise(weekly_admissions = sum(admissions)) %>%
ggplot(aes(x=week_start,y=weekly_admissions,fill=age_range,color=age_range)) +
geom_area() +
ylab("Weekly Admissions (confirmed and suspected)")
## Currently Hospitalized
hospitalizations_wa %>%
filter(date == max(date)) %>%
select(state,
date,
inpatient_beds,
inpatient_beds_used,
inpatient_beds_utilization, ## This should be a KPI card
inpatient_bed_covid_utilization, ## This should be a KPI card
percent_of_inpatients_with_covid,
total_adult_patients_hospitalized_confirmed_and_suspected_covid,
total_pediatric_patients_hospitalized_confirmed_and_suspected_covid,
total_staffed_adult_icu_beds,
staffed_adult_icu_bed_occupancy, ## This should be a KPI card
staffed_icu_adult_patients_confirmed_and_suspected_covid,
adult_icu_bed_covid_utilization) ## This should be a KPI card
### Hospitalized
hospitalizations_wa %>%
filter(date>='2021-08-01') %>%
select(state,
date,
inpatient_beds,
inpatient_beds_used,
inpatient_beds_used_covid) %>%
pivot_longer(cols=starts_with("inpatient"),
names_to="measure",
values_to = "beds",
names_prefix = "inpatient_") %>%
ggplot(aes(x=date,y=beds,color=measure)) +
geom_line()
hospitalizations_wa %>%
filter(date>='2021-01-01' & inpatient_beds_coverage > 98) %>%
select(state,
date,
inpatient_beds_utilization,
inpatient_bed_covid_utilization) %>%
pivot_longer(cols=any_of(c("inpatient_beds_utilization","inpatient_bed_covid_utilization","inpatient_beds_coverage")),
names_to="measure",
values_to = "utilization") %>%
ggplot(aes(x=date,y=utilization,color=measure)) +
geom_line()
hospitalizations_wa %>%
filter(date>='2021-01-01' & adult_icu_bed_utilization_coverage > 98) %>%
select(state,
date,
adult_icu_bed_utilization,
adult_icu_bed_covid_utilization) %>%
pivot_longer(cols=any_of(c("adult_icu_bed_utilization","adult_icu_bed_covid_utilization")),
names_to="measure",
values_to = "utilization") %>%
ggplot(aes(x=date,y=utilization,color=measure)) +
geom_line()
hospitalizations_wa %>%
filter(date>='2021-01-01' & inpatient_beds_coverage > 98) %>%
select(state,
date,
`Inpatient_beds utilized` = inpatient_beds_utilization,
`Inpatient_beds used for covid` = inpatient_bed_covid_utilization,
`Adult ICU_beds utilized` = adult_icu_bed_utilization,
`Adult ICU_beds used for covid` = adult_icu_bed_covid_utilization) %>%
pivot_longer(cols=any_of(c("Inpatient_beds utilized", "Inpatient_beds used for covid", "Adult ICU_beds utilized", "Adult ICU_beds used for covid")),
names_to="measure",
values_to = "utilization") %>%
separate(measure,into= c("bed_type","measure"),sep ="_") %>%
ggplot(aes(x=date,y=utilization,color=measure)) +
geom_line() +
scale_y_continuous(labels = scales::percent) +
scale_x_date(date_labels = "%b-%y",date_breaks = "1 month") +
ylab('') + xlab('') +
facet_wrap(~bed_type) +
theme_ipsum_rc() + theme(legend.title = element_blank())
### US Pediatric Hospitalizations by Percent
hospitalizations %>%
filter(date>='2021-01-01' & inpatient_beds_coverage > 98) %>%
select(state,
date,
total_adult_hospitalizations = total_adult_patients_hospitalized_confirmed_and_suspected_covid,
total_pediatric_hospitalizatons = total_pediatric_patients_hospitalized_confirmed_and_suspected_covid) %>%
mutate(pediatric_hospitalizations_percent = total_pediatric_hospitalizatons/(total_pediatric_hospitalizatons + total_adult_hospitalizations)) %>%
pivot_longer(cols=any_of(c("total_adult_hospitalizations", "total_pediatric_hospitalizatons","pediatric_hospitalizations_percent")),
names_to="measure",
values_to = "hospitalized") %>%
filter(measure == "pediatric_hospitalizations_percent") %>%
mutate(hospitalized = mean_run(hospitalized,k=7)) %>%
ggplot(aes(x=date,y=hospitalized,color=measure,fill=measure)) +
geom_area(alpha=0.3) +
# geom_bar(position="fill", stat="identity") +
scale_y_continuous(labels = scales::percent) +
scale_x_date(date_labels = "%b-%y",date_breaks = "1 month") +
ylab('') + xlab('') +
geofacet::facet_geo(~state)+
theme_ipsum_rc() + theme(legend.title = element_blank())
## Hospital Bed Utilization By State
hospitalizations %>%
filter(date>='2021-07-01') %>%
select(state,
date,
`Inpatient_beds utilized` = inpatient_beds_utilization,
`Inpatient_beds used for covid` = inpatient_bed_covid_utilization,
`Adult ICU_beds utilized` = adult_icu_bed_utilization,
`Adult ICU_beds used for covid` = adult_icu_bed_covid_utilization) %>%
pivot_longer(cols=any_of(c("Inpatient_beds utilized", "Adult ICU_beds utilized")),
names_to="measure",
values_to = "utilization") %>%
separate(measure,into= c("bed_type","measure"),sep ="_") %>%
ggplot(aes(x=date,y=utilization,color=bed_type)) +
geom_line() +
scale_y_continuous(labels = scales::percent, limits=c(NA,1)) +
scale_x_date(date_labels = "%b-%y",date_breaks = "1 month") +
ylab('') + xlab('') +
geofacet::facet_geo(~ state) +
theme_ft_rc() + theme(legend.title = element_blank())
## US Daily Hospitalizations
#confirmed only
hospitalizations %>%
filter(date >= '2020-06-01') %>%
select(date,previous_day_admission_adult_covid_confirmed,previous_day_admission_pediatric_covid_confirmed)%>%
group_by(date) %>%
summarise(previous_day_addmissions = sum(previous_day_admission_adult_covid_confirmed + previous_day_admission_pediatric_covid_confirmed)) %>%
ggplot(aes(x=date,y=previous_day_addmissions))+
geom_line() +
scale_y_continuous(labels = scales::comma) +
scale_x_date(date_labels = "%b-%y",date_breaks = "2 month") +
ylab('') + xlab('') +
labs(title="Previous Days Hospitalizations",caption="Includes both adult and pediatric admissions. Data from COVID-19 Reported Patient Impact and Hospital Capacity by State Timeseries https://healthdata.gov/resource/g62h-syeh") +
theme_ft_rc()
### Currently Hospitalized by State
hospitalizations %>%
filter(date == max(date)) %>%
select(state,
date,
total_adult_patients_hospitalized_confirmed_and_suspected_covid,
staffed_icu_adult_patients_confirmed_and_suspected_covid,
total_pediatric_patients_hospitalized_confirmed_and_suspected_covid) %>%
mutate(hospitalized = total_adult_patients_hospitalized_confirmed_and_suspected_covid + total_pediatric_patients_hospitalized_confirmed_and_suspected_covid + staffed_icu_adult_patients_confirmed_and_suspected_covid)
### Currently Hospitalized US
hospitalizations %>%
filter(date == max(date)) %>%
select(state,
date,
total_adult_patients_hospitalized_confirmed_and_suspected_covid,
staffed_icu_adult_patients_confirmed_and_suspected_covid,
total_pediatric_patients_hospitalized_confirmed_and_suspected_covid) %>%
mutate(hospitalized = +total_adult_patients_hospitalized_confirmed_and_suspected_covid + total_pediatric_patients_hospitalized_confirmed_and_suspected_covid + staffed_icu_adult_patients_confirmed_and_suspected_covid) %>%
summarise(hospitalized = sum(hospitalized))