-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsha256.w
537 lines (407 loc) · 15.5 KB
/
sha256.w
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
\input amssym
\def\title{SHA-256}
\def\topofcontents{\null\vfill
\centerline{\titlefont The SHA-256 algorithm}
\vfill}
\def\botofcontents{\vfill
\noindent
Copyright \copyright\ 2002 Brute Squad Labs, Inc.
\bigskip\noindent
Permission is granted to make and distribute verbatim copies of this
document provided that the copyright notice and this permission notice
are preserved on all copies.
\smallskip\noindent
Permission is granted to copy and distribute modified versions of this
document under the conditions for verbatim copying, provided that the
entire resulting derived work is given a different name and distributed
under the terms of a permission notice identical to this one.
}
\datethis
@*Introduction. What follows is an implementation of the SHA-256 cryptographic
message digest algorithm as defined in \pdfURL{FIPS PUB 180-4}
{https://csrc.nist.gov/publications/detail/fips/180/4/final}. It actually
works, and I've put in the unit tests that came with the spec --- define the
preprocessor symbol |UNIT_TEST| to enable them.
This was largely an experiment on my part to see how easy and useful it is to
``program literately'', and I tell you --- it really is a lot of fun.
But is it really useful? I mean, if you were going to write 120,000 lines of
code, would it work? I imagine that Knuth thinks so, since he did \TeX\ that
way.
Let me mess with it some more. Enjoy this literary feast (well, OK, literary
snack), and when you're done snacking, go ahead and run it. Kinda like eating
the shell your taco salad comes in --- it's a bowl as well as a snack.
\smallskip\rightline{--- Blake Ramsdell, July 2002}
\rightline{\pdfURL{Brute Squad Labs, Inc.}{http://www.brutesquadlabs.com}}
\medskip{\bf December 2022 update} I have updated this slightly to refer to the
current FIPS 180-4 specification and appropriate sections. For the test cases,
I chose to refer to the original cases from FIPS 180-2 (a subset of these test
cases were moved to a separate document that has a URL so long that I can't get
CWEB to parse it.)
@s sha_256_context int
@s uint8_t int
@s uint32_t int
@*Usage. In order to digest data with SHA-256, you simply call |sha_256_init| followed
by one or more calls to |sha_256_update| and then ultimately call
|sha_256_final|. The resulting digest is stored in the byte array member
|final_digest| of the |sha_256_context| structure.
@c
#include <memory.h>
#include <stdint.h>
@<Type definitions@>@;
@<Global constants@>@;
@<Underlying functions@>@;
void sha_256_init(sha_256_context* context)
{
@<Set |H|...@>@;
@<Initialize the current message block...@>@;
}
void sha_256_update(sha_256_context* context, uint32_t data_length, const uint8_t* data)
{
while (data_length > 0)
{
uint32_t bytes_to_copy = min(remaining_bytes_in_block, data_length);
@<Append data to...@>@;
@<Update hash...@>@;
data_length -= bytes_to_copy;
data += bytes_to_copy;
}
}
void sha_256_final(sha_256_context* context)
{
uint32_t total_data_processed_bits = context->total_data_processed_bytes * 8;
uint8_t temp_buffer[sizeof(context->M)];
@<Append padding to the end of the message@>@;
@<Append length...@>@;
@<Expand the final digest@>@;
}
@*Type definitions, macros and constants.
@ The |rotr| macro is used for rotating a |uint32_t|, |X|, |N| bits to the right.
@d rotr(X, N) ((X >> N) | (X << (32 - N)))
@ Good ol' |min|. Nothing beats that. Except maybe |max|, but he's not here.
@d min(X, Y) (((X) < (Y)) ? (X) : (Y))
@ |remaining_bytes_in_block| figures out the number of bytes remaining in the
current message block, $M^{(i)}$.
@d remaining_bytes_in_block (sizeof(context->M) - context->current_block_length_bytes)
@ The array |K| corresponds to the sequence $K^{\{256\}}$ defined in FIPS 180-4
\S4.2.2. According to that section, ``These words represent the first thirty-two
bits of the fractional parts of the cube roots of the first sixty four prime
numbers$\ldots$''
@<Global constants@>=
static uint32_t K[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1,
0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786,
0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a,
0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
@ We will use a context object to retain information in between calls to
|sha_256_update|.
@<Type definitions@>=
typedef struct
{
@<Context data@>
} sha_256_context;
@ The last hash value, $H^{(i-1)}$
@<Context data@>=
uint32_t H[8];
@ The current block of the message, $M^{(i)}$, $m$ bits long. $m = 512$ for
SHA-256.
@<Context data@>=
uint8_t M[512 / 8]; /* Blocks are 512 bits long */
uint32_t current_block_length_bytes;
@ The total number of bytes in the message so far, $(l * 8)$, since $l$ is in
bits.
@<Context data@>=
uint32_t total_data_processed_bytes;
@ The final digest value, $H^{(N)}$
@<Context data@>=
uint8_t final_digest[32];
@*Underlying functions. There are several primitive functions for SHA-256.
@ The function Ch as defined in FIPS 180-4 \S4.1.2.
$${\rm Ch}(x,y,z) = (x \land y) \oplus (\lnot x \land z)$$
@<Underlying functions@>=
uint32_t Ch(uint32_t x, uint32_t y, uint32_t z)
{
return (x & y) ^ (~x & z);
}
@ The function Maj as defined in FIPS 180-4 \S4.1.2.
$${\rm Maj}(x,y,z) = (x \land y) \oplus (x \land z) \oplus (y \land z)$$
@<Underlying functions@>=
uint32_t Maj(uint32_t x, uint32_t y, uint32_t z)
{
return (x & y) ^ (x & z) ^ (y & z);
}
@ The function |sigma0| corresponds to the function $\sigma_0^{\{256\}}$ in
FIPS 180-4 \S4.1.2.
$$\sigma_0^{\{256\}}(x) = (x \ggg 7) \oplus (x \ggg 18) \oplus (x \gg 3)$$
@<Underlying functions@>=
uint32_t sigma0(uint32_t x)
{
return rotr(x, 7) ^ rotr(x, 18) ^ (x >> 3);
}
@ The function |sigma1| corresponds to the function $\sigma_1^{\{256\}}$ in
FIPS 180-4 \S4.1.2.
$$\sigma_1^{\{256\}}(x) = (x \ggg 17) \oplus (x \ggg 19) \oplus (x \gg 10)$$
@<Underlying functions@>=
uint32_t sigma1(uint32_t x)
{
return rotr(x, 17) ^ rotr(x, 19) ^ (x >> 10);
}
@ The function |Sigma0| corresponds to the function $\Sigma_0^{\{256\}}$ in
FIPS 180-4 \S4.1.2.
$$\Sigma_0^{\{256\}}(x) = (x \ggg 2) \oplus (x \ggg 13) \oplus (x \ggg 22)$$
@<Underlying functions@>=
uint32_t Sigma0(uint32_t x)
{
return rotr(x, 2) ^ rotr(x, 13) ^ rotr(x, 22);
}
@ The function |Sigma1| corresponds to the function $\Sigma_1^{\{256\}}$ in
FIPS 180-4 \S4.1.2.
$$\Sigma_1^{\{256\}}(x) = (x \ggg 6) \oplus (x \ggg 11) \oplus (x \ggg 25)$$
@<Underlying functions@>=
uint32_t Sigma1(uint32_t x)
{
return rotr(x, 6) ^ rotr(x, 11) ^ rotr(x, 25);
}
@*Preprocessing. Prepares the |sha_256_context| structure for first use.
@ The current hash value, $H$, is set to $H^{(0)}$ per the values in FIPS 180-4
\S5.3.3. According to that section, ``These words were obtained by taking the
first thirty-two bits of the fractional parts of the square roots of the first
eight prime numbers.''
@<Set |H| to the initial value, $H^{(0)}$@>=
context->H[0] = 0x6a09e667;
context->H[1] = 0xbb67ae85;
context->H[2] = 0x3c6ef372;
context->H[3] = 0xa54ff53a;
context->H[4] = 0x510e527f;
context->H[5] = 0x9b05688c;
context->H[6] = 0x1f83d9ab;
context->H[7] = 0x5be0cd19;
@ The current block size and the total number of bytes processed are zeroed.
@<Initialize the current message block, $M^{(0)}$@>=
context->current_block_length_bytes = 0;
context->total_data_processed_bytes = 0;
@*Hash computation. The code in here is for implementing the methods of FIPS
180-4 \S6.2 in order to compute the current hash value, $H^{(i)}$ for the
current message block, $M^{(i)}$.
@ The general strategy is as follows
@<Compute the intermediate hash value, $H^{(i)}$@>=
{
uint32_t a, b, c, d, e, f, g, h;
uint32_t t;
uint32_t T1, T2;
uint32_t W[64];
@<Initialize working...@>@;
for (t = 0;t < 64;++t)
{
@<Compute the message schedule...@>@;
@<Compression...@>@;
}
@<Copy the intermediate...@>@;
context->current_block_length_bytes = 0;
}
@ FIPS 180-4 \S6.2.2 specifies in step 2 the initialization of eight working
variables $a, b, \ldots, h$ to the current value of $H$ (which is the hash value
for the previous block, and thus represents $H^{(i-1)}$.)
@<Initialize working variables from $H^{(i-1)}$@>=
a = context->H[0];
b = context->H[1];
c = context->H[2];
d = context->H[3];
e = context->H[4];
f = context->H[5];
g = context->H[6];
h = context->H[7];
@ FIPS 180-4 \S6.2.2 specifies in step 1 to compute $W_t$.
$$W_t\gets\left\{\matrix{
M_t^{(i)} \hfill & 0 \leq t \leq 15\hfill\cr
\sigma_1^{\{256\}}(W_{t-2})+W_{t-7}+\sigma_0^{\{256\}}(W_{t-15}) + W_{t-16} \hfill&
16 \leq t \leq 63\hfill\cr}
\right.$$
@<Compute the message schedule, $W_t$@>=
if (t <= 15)
{
W[t] =
(context->M[t * 4] << 24) |
(context->M[(t * 4) + 1] << 16) |
(context->M[(t * 4) + 2] << 8) |
(context->M[(t * 4) + 3]);
}
else
{
W[t] =
sigma1(W[t-2]) +
W[t-7] +
sigma0(W[t-15]) +
W[t-16];
}
@ The compression function, as specified in FIPS 180-4 \S6.2.2 step 3.
@<Compression function@>=
T1 = h + Sigma1(e) + Ch(e, f, g) + K[t] + W[t];
T2 = Sigma0(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
@ Finally we assign the current intermediate hash value, $H^{(i)}$ to |H| in the
context, per FIPS 180-4 \S6.2.2 step 4.
@<Copy the intermediate hash value, $H^{(i)}$@>=
context->H[0] += a;
context->H[1] += b;
context->H[2] += c;
context->H[3] += d;
context->H[4] += e;
context->H[5] += f;
context->H[6] += g;
context->H[7] += h;
@*Message block processing.
@ Append some data to the message block, possibly filling the block.
@<Append data to the current message block, $M^{(i)}$@>=
memcpy(context->M + context->current_block_length_bytes, data, bytes_to_copy);
context->current_block_length_bytes += bytes_to_copy;
context->total_data_processed_bytes += bytes_to_copy;
@ In the event that the current block is full, then compute the intermediate
hash value, $H^{(i)}$.
@<Update hash if required@>=
if (remaining_bytes_in_block == 0)
{
@<Compute the intermediate...@>@;
}
@* Final block processing. We need to jam a single 1 bit, followed by some
number of 0 bits followed by 64 bits of the length (in bits) of the data that
has been digested (from FIPS 180-4 \S5.1.1). Finally, we make a byte array copy
of the final digest value, $H^{(N)}$.
@ The padding length is computed to leave enough space for the eight byte
length, and then added to the message.
@<Append padding to the end of the message@>=
temp_buffer[0] = 0x080; // Our one bit plus seven zero bits
sha_256_update(context, 1, temp_buffer);
memset(temp_buffer, 0, sizeof(temp_buffer));
if (remaining_bytes_in_block < 8)
{
// Fill up this block
sha_256_update(context, remaining_bytes_in_block, temp_buffer);
}
sha_256_update(context, remaining_bytes_in_block - 8, temp_buffer);
@ The eight byte length is then appended to the message.
@<Append length to the end of the message@>=
temp_buffer[4] = (total_data_processed_bits >> 24) & 0x0FF;
temp_buffer[5] = (total_data_processed_bits >> 16) & 0x0FF;
temp_buffer[6] = (total_data_processed_bits >> 8) & 0x0FF;
temp_buffer[7] = (total_data_processed_bits) & 0x0FF;
sha_256_update(context, 8, temp_buffer);
@ Make a copy of the final digest block, $H^{(N)}$, converted to a byte array.
@<Expand the final digest@>=
{
int counter;
for (counter = 0;counter < (sizeof(context->H) / sizeof(context->H[0]));++counter)
{
context->final_digest[(counter * 4) + 0] = ((context->H[counter] >> 24) & 0x0ff);
context->final_digest[(counter * 4) + 1] = ((context->H[counter] >> 16) & 0x0ff);
context->final_digest[(counter * 4) + 2] = ((context->H[counter] >> 8) & 0x0ff);
context->final_digest[(counter * 4) + 3] = ((context->H[counter]) & 0x0ff);
}
}
@*Unit tests. The following section implements the unit tests for this module.
The unit tests will only be included in the event that the \CEE/ preprocessor
symbol |UNIT_TEST| is |#define|d.
@c
#ifdef UNIT_TEST
#include <stdio.h> /* Just for |printf| */
@<Unit tests@>@;
int main(int argc, char** argv)
{
@<Run unit tests@>@;
return 0;
}
#endif
@ Each unit test will use this macro to print its output. It uses the function
name for the output test name.
@d assert_final_digest_equal() assert_byte_arrays_equal(__func__, expected_value, sizeof(expected_value), context.final_digest, sizeof(context.final_digest))
@ Helper test function for making sure two byte arrays are equal.
@<Unit tests@>=
void assert_byte_arrays_equal(
const char* test_name,
const uint8_t* expected_value,
int expected_value_length,
const uint8_t* actual_value,
int actual_value_length)
{
printf("%s %s\n", ((expected_value_length != actual_value_length) ||
(memcmp(expected_value, actual_value, actual_value_length) != 0)) ?
"FAIL" : "PASS", test_name);
}
@ FIPS 180-2 \S{}B.1, hashing the string |"abc"|
@<Unit tests@>=
void test_B1()
{
const uint8_t expected_value[] = {
0xba, 0x78, 0x16, 0xbf, 0x8f, 0x01, 0xcf, 0xea,
0x41, 0x41, 0x40, 0xde, 0x5d, 0xae, 0x22, 0x23,
0xb0, 0x03, 0x61, 0xa3, 0x96, 0x17, 0x7a, 0x9c,
0xb4, 0x10, 0xff, 0x61, 0xf2, 0x00, 0x15, 0xad
};
sha_256_context context;
sha_256_init(&context);
sha_256_update(&context, 3, (const uint8_t*) "abc");
sha_256_final(&context);
assert_final_digest_equal();
}
@ @<Run unit tests@>=
test_B1();
@ FIPS 180-2 \S{}B.2, hashing the string |"abcdbc..."|
@<Unit tests@>=
void test_B2()
{
const uint8_t expected_value[] = {
0x24, 0x8d, 0x6a, 0x61, 0xd2, 0x06, 0x38, 0xb8,
0xe5, 0xc0, 0x26, 0x93, 0x0c, 0x3e, 0x60, 0x39,
0xa3, 0x3c, 0xe4, 0x59, 0x64, 0xff, 0x21, 0x67,
0xf6, 0xec, 0xed, 0xd4, 0x19, 0xdb, 0x06, 0xc1
};
sha_256_context context;
sha_256_init(&context);
sha_256_update(&context, 56, (const uint8_t*) "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq");
sha_256_final(&context);
assert_final_digest_equal();
}
@ @<Run unit tests@>=
test_B2();
@ FIPS 180-2 \S{}B.3, hashing the byte |'a'| 1,000,000 times (1,000 calls to
|sha_256_update| with 1,000 |'a'|s apiece.) This example was not preserved in
FIPS 180-4 supporting documents.
@<Unit tests@>=
void test_B3()
{
const uint8_t expected_value[] = {
0xcd, 0xc7, 0x6e, 0x5c, 0x99, 0x14, 0xfb, 0x92,
0x81, 0xa1, 0xc7, 0xe2, 0x84, 0xd7, 0x3e, 0x67,
0xf1, 0x80, 0x9a, 0x48, 0xa4, 0x97, 0x20, 0x0e,
0x04, 0x6d, 0x39, 0xcc, 0xc7, 0x11, 0x2c, 0xd0
};
sha_256_context context;
uint8_t data_block[1000];
int counter = 0;
memset(data_block, 'a', sizeof(data_block));
sha_256_init(&context);
for (counter = 0;counter < 1000;++counter)
{
sha_256_update(&context, sizeof(data_block), data_block);
}
sha_256_final(&context);
assert_final_digest_equal();
}
@ @<Run unit tests@>=
test_B3();
@* Index. {\tt CWEAVE} likes to make it, so why should I complain? Hopefully you
find what you're looking for in it.