forked from coq/coq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreductionops.ml
1818 lines (1599 loc) · 65.2 KB
/
reductionops.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open CErrors
open Util
open Names
open Term
open Termops
open Univ
open Evd
open Environ
open EConstr
open Vars
open Context.Rel.Declaration
exception Elimconst
(** This module implements a call by name reduction used by (at
least) evarconv unification and cbn tactic.
It has an ability to "refold" constants by storing constants and
their parameters in its stack.
*)
let refolding_in_reduction = ref false
let _ = Goptions.declare_bool_option {
Goptions.optdepr = true; (* remove in 8.8 *)
Goptions.optname =
"Perform refolding of fixpoints/constants like cbn during reductions";
Goptions.optkey = ["Refolding";"Reduction"];
Goptions.optread = (fun () -> !refolding_in_reduction);
Goptions.optwrite = (fun a -> refolding_in_reduction:=a);
}
let get_refolding_in_reduction () = !refolding_in_reduction
let set_refolding_in_reduction = (:=) refolding_in_reduction
(** Support for reduction effects *)
open Mod_subst
open Libobject
type effect_name = string
(** create a persistent set to store effect functions *)
module ConstrMap = Map.Make (Constr)
(* Table bindings a constant to an effect *)
let constant_effect_table = Summary.ref ~name:"reduction-side-effect" ConstrMap.empty
(* Table bindings function key to effective functions *)
let effect_table = Summary.ref ~name:"reduction-function-effect" String.Map.empty
(** a test to know whether a constant is actually the effect function *)
let reduction_effect_hook env sigma termkey c =
try
let funkey = ConstrMap.find termkey !constant_effect_table in
let effect = String.Map.find funkey !effect_table in
effect env sigma (Lazy.force c)
with Not_found -> ()
let cache_reduction_effect (_,(termkey,funkey)) =
constant_effect_table := ConstrMap.add termkey funkey !constant_effect_table
let subst_reduction_effect (subst,(termkey,funkey)) =
(subst_mps subst termkey,funkey)
let inReductionEffect : Constr.constr * string -> obj =
declare_object {(default_object "REDUCTION-EFFECT") with
cache_function = cache_reduction_effect;
open_function = (fun i o -> if Int.equal i 1 then cache_reduction_effect o);
subst_function = subst_reduction_effect;
classify_function = (fun o -> Substitute o) }
let declare_reduction_effect funkey f =
if String.Map.mem funkey !effect_table then
CErrors.anomaly Pp.(str "Cannot redeclare effect function " ++ qstring funkey ++ str ".");
effect_table := String.Map.add funkey f !effect_table
(** A function to set the value of the print function *)
let set_reduction_effect x funkey =
let termkey = Universes.constr_of_global x in
Lib.add_anonymous_leaf (inReductionEffect (termkey,funkey))
(** Machinery to custom the behavior of the reduction *)
module ReductionBehaviour = struct
open Globnames
open Libobject
type t = {
b_nargs: int;
b_recargs: int list;
b_dont_expose_case: bool;
}
let table =
Summary.ref (Refmap.empty : t Refmap.t) ~name:"reductionbehaviour"
type flag = [ `ReductionDontExposeCase | `ReductionNeverUnfold ]
type req =
| ReqLocal
| ReqGlobal of global_reference * (int list * int * flag list)
let load _ (_,(_,(r, b))) =
table := Refmap.add r b !table
let cache o = load 1 o
let classify = function
| ReqLocal, _ -> Dispose
| ReqGlobal _, _ as o -> Substitute o
let subst (subst, (_, (r,o as orig))) =
ReqLocal,
let r' = fst (subst_global subst r) in if r==r' then orig else (r',o)
let discharge = function
| _,(ReqGlobal (ConstRef c, req), (_, b)) ->
let b =
if Lib.is_in_section (ConstRef c) then
let vars, _, _ = Lib.section_segment_of_constant c in
let extra = List.length vars in
let nargs' =
if b.b_nargs = max_int then max_int
else if b.b_nargs < 0 then b.b_nargs
else b.b_nargs + extra in
let recargs' = List.map ((+) extra) b.b_recargs in
{ b with b_nargs = nargs'; b_recargs = recargs' }
else b
in
let c = Lib.discharge_con c in
Some (ReqGlobal (ConstRef c, req), (ConstRef c, b))
| _ -> None
let rebuild = function
| req, (ConstRef c, _ as x) -> req, x
| _ -> assert false
let inRedBehaviour = declare_object {
(default_object "REDUCTIONBEHAVIOUR") with
load_function = load;
cache_function = cache;
classify_function = classify;
subst_function = subst;
discharge_function = discharge;
rebuild_function = rebuild;
}
let set local r (recargs, nargs, flags as req) =
let nargs = if List.mem `ReductionNeverUnfold flags then max_int else nargs in
let behaviour = {
b_nargs = nargs; b_recargs = recargs;
b_dont_expose_case = List.mem `ReductionDontExposeCase flags } in
let req = if local then ReqLocal else ReqGlobal (r, req) in
Lib.add_anonymous_leaf (inRedBehaviour (req, (r, behaviour)))
;;
let get r =
try
let b = Refmap.find r !table in
let flags =
if Int.equal b.b_nargs max_int then [`ReductionNeverUnfold]
else if b.b_dont_expose_case then [`ReductionDontExposeCase] else [] in
Some (b.b_recargs, (if Int.equal b.b_nargs max_int then -1 else b.b_nargs), flags)
with Not_found -> None
let print ref =
let open Pp in
let pr_global = Nametab.pr_global_env Id.Set.empty in
match get ref with
| None -> mt ()
| Some (recargs, nargs, flags) ->
let never = List.mem `ReductionNeverUnfold flags in
let nomatch = List.mem `ReductionDontExposeCase flags in
let pp_nomatch = spc() ++ if nomatch then
str "but avoid exposing match constructs" else str"" in
let pp_recargs = spc() ++ str "when the " ++
pr_enum (fun x -> pr_nth (x+1)) recargs ++ str (String.plural (List.length recargs) " argument") ++
str (String.plural (if List.length recargs >= 2 then 1 else 2) " evaluate") ++
str " to a constructor" in
let pp_nargs =
spc() ++ str "when applied to " ++ int nargs ++
str (String.plural nargs " argument") in
hov 2 (str "The reduction tactics " ++
match recargs, nargs, never with
| _,_, true -> str "never unfold " ++ pr_global ref
| [], 0, _ -> str "always unfold " ++ pr_global ref
| _::_, n, _ when n < 0 ->
str "unfold " ++ pr_global ref ++ pp_recargs ++ pp_nomatch
| _::_, n, _ when n > List.fold_left max 0 recargs ->
str "unfold " ++ pr_global ref ++ pp_recargs ++
str " and" ++ pp_nargs ++ pp_nomatch
| _::_, _, _ ->
str "unfold " ++ pr_global ref ++ pp_recargs ++ pp_nomatch
| [], n, _ when n > 0 ->
str "unfold " ++ pr_global ref ++ pp_nargs ++ pp_nomatch
| _ -> str "unfold " ++ pr_global ref ++ pp_nomatch )
end
(** Machinery about stack of unfolded constants *)
module Cst_stack = struct
open EConstr
(** constant * params * args
- constant applied to params = term in head applied to args
- there is at most one arguments with an empty list of args, it must be the first.
- in args, the int represents the indice of the first arg to consider *)
type t = (constr * constr list * (int * constr array) list) list
let empty = []
let is_empty = CList.is_empty
let drop_useless = function
| _ :: ((_,_,[])::_ as q) -> q
| l -> l
let add_param h cst_l =
let append2cst = function
| (c,params,[]) -> (c, h::params, [])
| (c,params,((i,t)::q)) when i = pred (Array.length t) ->
(c, params, q)
| (c,params,(i,t)::q) ->
(c, params, (succ i,t)::q)
in
drop_useless (List.map append2cst cst_l)
let add_args cl =
List.map (fun (a,b,args) -> (a,b,(0,cl)::args))
let add_cst cst = function
| (_,_,[]) :: q as l -> l
| l -> (cst,[],[])::l
let best_cst = function
| (cst,params,[])::_ -> Some(cst,params)
| _ -> None
let reference sigma t = match best_cst t with
| Some (c, _) when isConst sigma c -> Some (fst (destConst sigma c))
| _ -> None
(** [best_replace d cst_l c] makes the best replacement for [d]
by [cst_l] in [c] *)
let best_replace sigma d cst_l c =
let reconstruct_head = List.fold_left
(fun t (i,args) -> mkApp (t,Array.sub args i (Array.length args - i))) in
List.fold_right
(fun (cst,params,args) t -> Termops.replace_term sigma
(reconstruct_head d args)
(applist (cst, List.rev params))
t) cst_l c
let pr l =
let open Pp in
let p_c c = Termops.print_constr c in
prlist_with_sep pr_semicolon
(fun (c,params,args) ->
hov 1 (str"(" ++ p_c c ++ str ")" ++ spc () ++ pr_sequence p_c params ++ spc () ++ str "(args:" ++
pr_sequence (fun (i,el) -> prvect_with_sep spc p_c (Array.sub el i (Array.length el - i))) args ++
str ")")) l
end
(** The type of (machine) stacks (= lambda-bar-calculus' contexts) *)
module Stack :
sig
open EConstr
type 'a app_node
val pr_app_node : ('a -> Pp.std_ppcmds) -> 'a app_node -> Pp.std_ppcmds
type cst_member =
| Cst_const of pconstant
| Cst_proj of projection
type 'a member =
| App of 'a app_node
| Case of case_info * 'a * 'a array * Cst_stack.t
| Proj of int * int * projection * Cst_stack.t
| Fix of ('a, 'a) pfixpoint * 'a t * Cst_stack.t
| Cst of cst_member * int * int list * 'a t * Cst_stack.t
| Shift of int
| Update of 'a
and 'a t = 'a member list
exception IncompatibleFold2
val pr : ('a -> Pp.std_ppcmds) -> 'a t -> Pp.std_ppcmds
val empty : 'a t
val is_empty : 'a t -> bool
val append_app : 'a array -> 'a t -> 'a t
val decomp : 'a t -> ('a * 'a t) option
val decomp_node_last : 'a app_node -> 'a t -> ('a * 'a t)
val equal : ('a * int -> 'a * int -> bool) -> (('a, 'a) pfixpoint * int -> ('a, 'a) pfixpoint * int -> bool)
-> 'a t -> 'a t -> (int * int) option
val compare_shape : 'a t -> 'a t -> bool
val map : ('a -> 'a) -> 'a t -> 'a t
val fold2 : ('a -> constr -> constr -> 'a) -> 'a ->
constr t -> constr t -> 'a * int * int
val append_app_list : 'a list -> 'a t -> 'a t
val strip_app : 'a t -> 'a t * 'a t
val strip_n_app : int -> 'a t -> ('a t * 'a * 'a t) option
val not_purely_applicative : 'a t -> bool
val will_expose_iota : 'a t -> bool
val list_of_app_stack : constr t -> constr list option
val assign : 'a t -> int -> 'a -> 'a t
val args_size : 'a t -> int
val tail : int -> 'a t -> 'a t
val nth : 'a t -> int -> 'a
val best_state : evar_map -> constr * constr t -> Cst_stack.t -> constr * constr t
val zip : ?refold:bool -> evar_map -> constr * constr t -> constr
end =
struct
open EConstr
type 'a app_node = int * 'a array * int
(* first releavnt position, arguments, last relevant position *)
(*
Invariant that this module must ensure :
(behare of direct access to app_node by the rest of Reductionops)
- in app_node (i,_,j) i <= j
- There is no array realocation (outside of debug printing)
*)
let pr_app_node pr (i,a,j) =
let open Pp in surround (
prvect_with_sep pr_comma pr (Array.sub a i (j - i + 1))
)
type cst_member =
| Cst_const of pconstant
| Cst_proj of projection
type 'a member =
| App of 'a app_node
| Case of Term.case_info * 'a * 'a array * Cst_stack.t
| Proj of int * int * projection * Cst_stack.t
| Fix of ('a, 'a) pfixpoint * 'a t * Cst_stack.t
| Cst of cst_member * int * int list * 'a t * Cst_stack.t
| Shift of int
| Update of 'a
and 'a t = 'a member list
let rec pr_member pr_c member =
let open Pp in
let pr_c x = hov 1 (pr_c x) in
match member with
| App app -> str "ZApp" ++ pr_app_node pr_c app
| Case (_,_,br,cst) ->
str "ZCase(" ++
prvect_with_sep (pr_bar) pr_c br
++ str ")"
| Proj (n,m,p,cst) ->
str "ZProj(" ++ int n ++ pr_comma () ++ int m ++
pr_comma () ++ pr_con (Projection.constant p) ++ str ")"
| Fix (f,args,cst) ->
str "ZFix(" ++ Termops.pr_fix pr_c f
++ pr_comma () ++ pr pr_c args ++ str ")"
| Cst (mem,curr,remains,params,cst_l) ->
str "ZCst(" ++ pr_cst_member pr_c mem ++ pr_comma () ++ int curr
++ pr_comma () ++
prlist_with_sep pr_semicolon int remains ++
pr_comma () ++ pr pr_c params ++ str ")"
| Shift i -> str "ZShift(" ++ int i ++ str ")"
| Update t -> str "ZUpdate(" ++ pr_c t ++ str ")"
and pr pr_c l =
let open Pp in
prlist_with_sep pr_semicolon (fun x -> hov 1 (pr_member pr_c x)) l
and pr_cst_member pr_c c =
let open Pp in
match c with
| Cst_const (c, u) ->
if Univ.Instance.is_empty u then Constant.print c
else str"(" ++ Constant.print c ++ str ", " ++
Univ.Instance.pr Univ.Level.pr u ++ str")"
| Cst_proj p ->
str".(" ++ Constant.print (Projection.constant p) ++ str")"
let empty = []
let is_empty = CList.is_empty
let append_app v s =
let le = Array.length v in
if Int.equal le 0 then s else App (0,v,pred le) :: s
let decomp_node (i,l,j) sk =
if i < j then (l.(i), App (succ i,l,j) :: sk)
else (l.(i), sk)
let decomp = function
| App node::s -> Some (decomp_node node s)
| _ -> None
let decomp_node_last (i,l,j) sk =
if i < j then (l.(j), App (i,l,pred j) :: sk)
else (l.(j), sk)
let equal f f_fix sk1 sk2 =
let equal_cst_member x lft1 y lft2 =
match x, y with
| Cst_const (c1,u1), Cst_const (c2, u2) ->
Constant.equal c1 c2 && Univ.Instance.equal u1 u2
| Cst_proj p1, Cst_proj p2 ->
Constant.equal (Projection.constant p1) (Projection.constant p2)
| _, _ -> false
in
let rec equal_rec sk1 lft1 sk2 lft2 =
match sk1,sk2 with
| [],[] -> Some (lft1,lft2)
| (Update _ :: _, _ | _, Update _ :: _) -> assert false
| Shift k :: s1, _ -> equal_rec s1 (lft1+k) sk2 lft2
| _, Shift k :: s2 -> equal_rec sk1 lft1 s2 (lft2+k)
| App a1 :: s1, App a2 :: s2 ->
let t1,s1' = decomp_node_last a1 s1 in
let t2,s2' = decomp_node_last a2 s2 in
if f (t1,lft1) (t2,lft2) then equal_rec s1' lft1 s2' lft2 else None
| Case (_,t1,a1,_) :: s1, Case (_,t2,a2,_) :: s2 ->
if f (t1,lft1) (t2,lft2) && CArray.equal (fun x y -> f (x,lft1) (y,lft2)) a1 a2
then equal_rec s1 lft1 s2 lft2
else None
| (Proj (n1,m1,p,_)::s1, Proj(n2,m2,p2,_)::s2) ->
if Int.equal n1 n2 && Int.equal m1 m2
&& Constant.equal (Projection.constant p) (Projection.constant p2)
then equal_rec s1 lft1 s2 lft2
else None
| Fix (f1,s1,_) :: s1', Fix (f2,s2,_) :: s2' ->
if f_fix (f1,lft1) (f2,lft2) then
match equal_rec (List.rev s1) lft1 (List.rev s2) lft2 with
| None -> None
| Some (lft1',lft2') -> equal_rec s1' lft1' s2' lft2'
else None
| Cst (c1,curr1,remains1,params1,_)::s1', Cst (c2,curr2,remains2,params2,_)::s2' ->
if equal_cst_member c1 lft1 c2 lft2 then
match equal_rec (List.rev params1) lft1 (List.rev params2) lft2 with
| Some (lft1',lft2') -> equal_rec s1' lft1' s2' lft2'
| None -> None
else None
| ((App _|Case _|Proj _|Fix _|Cst _)::_|[]), _ -> None
in equal_rec (List.rev sk1) 0 (List.rev sk2) 0
let compare_shape stk1 stk2 =
let rec compare_rec bal stk1 stk2 =
match (stk1,stk2) with
([],[]) -> Int.equal bal 0
| ((Update _|Shift _)::s1, _) -> compare_rec bal s1 stk2
| (_, (Update _|Shift _)::s2) -> compare_rec bal stk1 s2
| (App (i,_,j)::s1, _) -> compare_rec (bal + j + 1 - i) s1 stk2
| (_, App (i,_,j)::s2) -> compare_rec (bal - j - 1 + i) stk1 s2
| (Case(c1,_,_,_)::s1, Case(c2,_,_,_)::s2) ->
Int.equal bal 0 (* && c1.ci_ind = c2.ci_ind *) && compare_rec 0 s1 s2
| (Proj (n1,m1,p,_)::s1, Proj(n2,m2,p2,_)::s2) ->
Int.equal bal 0 && compare_rec 0 s1 s2
| (Fix(_,a1,_)::s1, Fix(_,a2,_)::s2) ->
Int.equal bal 0 && compare_rec 0 a1 a2 && compare_rec 0 s1 s2
| (Cst (_,_,_,p1,_)::s1, Cst (_,_,_,p2,_)::s2) ->
Int.equal bal 0 && compare_rec 0 p1 p2 && compare_rec 0 s1 s2
| (_,_) -> false in
compare_rec 0 stk1 stk2
exception IncompatibleFold2
let fold2 f o sk1 sk2 =
let rec aux o lft1 sk1 lft2 sk2 =
let fold_array =
Array.fold_left2 (fun a x y -> f a (Vars.lift lft1 x) (Vars.lift lft2 y))
in
match sk1,sk2 with
| [], [] -> o,lft1,lft2
| Shift n :: q1, _ -> aux o (lft1+n) q1 lft2 sk2
| _, Shift n :: q2 -> aux o lft1 sk1 (lft2+n) q2
| App n1 :: q1, App n2 :: q2 ->
let t1,l1 = decomp_node_last n1 q1 in
let t2,l2 = decomp_node_last n2 q2 in
aux (f o (Vars.lift lft1 t1) (Vars.lift lft2 t2))
lft1 l1 lft2 l2
| Case (_,t1,a1,_) :: q1, Case (_,t2,a2,_) :: q2 ->
aux (fold_array
(f o (Vars.lift lft1 t1) (Vars.lift lft2 t2))
a1 a2) lft1 q1 lft2 q2
| Proj (n1,m1,p1,_) :: q1, Proj (n2,m2,p2,_) :: q2 ->
aux o lft1 q1 lft2 q2
| Fix ((_,(_,a1,b1)),s1,_) :: q1, Fix ((_,(_,a2,b2)),s2,_) :: q2 ->
let (o',lft1',lft2') = aux (fold_array (fold_array o b1 b2) a1 a2)
lft1 (List.rev s1) lft2 (List.rev s2) in
aux o' lft1' q1 lft2' q2
| Cst (cst1,_,_,params1,_) :: q1, Cst (cst2,_,_,params2,_) :: q2 ->
let (o',lft1',lft2') =
aux o lft1 (List.rev params1) lft2 (List.rev params2)
in aux o' lft1' q1 lft2' q2
| (((Update _|App _|Case _|Proj _|Fix _| Cst _) :: _|[]), _) ->
raise IncompatibleFold2
in aux o 0 (List.rev sk1) 0 (List.rev sk2)
let rec map f x = List.map (function
| Update _ -> assert false
| (Proj (_,_,_,_) | Shift _) as e -> e
| App (i,a,j) ->
let le = j - i + 1 in
App (0,Array.map f (Array.sub a i le), le-1)
| Case (info,ty,br,alt) -> Case (info, f ty, Array.map f br, alt)
| Fix ((r,(na,ty,bo)),arg,alt) ->
Fix ((r,(na,Array.map f ty, Array.map f bo)),map f arg,alt)
| Cst (cst,curr,remains,params,alt) ->
Cst (cst,curr,remains,map f params,alt)
) x
let append_app_list l s =
let a = Array.of_list l in
append_app a s
let rec args_size = function
| App (i,_,j)::s -> j + 1 - i + args_size s
| Shift(_)::s -> args_size s
| Update(_)::s -> args_size s
| (Case _|Fix _|Proj _|Cst _)::_ | [] -> 0
let strip_app s =
let rec aux out = function
| ( App _ | Shift _ as e) :: s -> aux (e :: out) s
| s -> List.rev out,s
in aux [] s
let strip_n_app n s =
let rec aux n out = function
| Shift k as e :: s -> aux n (e :: out) s
| App (i,a,j) as e :: s ->
let nb = j - i + 1 in
if n >= nb then
aux (n - nb) (e::out) s
else
let p = i+n in
Some (CList.rev
(if Int.equal n 0 then out else App (i,a,p-1) :: out),
a.(p),
if j > p then App(succ p,a,j)::s else s)
| s -> None
in aux n [] s
let not_purely_applicative args =
List.exists (function (Fix _ | Case _ | Proj _ | Cst _) -> true | _ -> false) args
let will_expose_iota args =
List.exists
(function (Fix (_,_,l) | Case (_,_,_,l) |
Proj (_,_,_,l) | Cst (_,_,_,_,l)) when Cst_stack.is_empty l -> true | _ -> false)
args
let list_of_app_stack s =
let rec aux = function
| App (i,a,j) :: s ->
let (k,(args',s')) = aux s in
let a' = Array.map (Vars.lift k) (Array.sub a i (j - i + 1)) in
k,(Array.fold_right (fun x y -> x::y) a' args', s')
| Shift n :: s ->
let (k,(args',s')) = aux s in (k+n,(args', s'))
| s -> (0,([],s)) in
let (lft,(out,s')) = aux s in
let init = match s' with [] when Int.equal lft 0 -> true | _ -> false in
Option.init init out
let assign s p c =
match strip_n_app p s with
| Some (pre,_,sk) -> pre @ (App (0,[|c|],0)::sk)
| None -> assert false
let tail n0 s0 =
let rec aux lft n s =
let out s = if Int.equal lft 0 then s else Shift lft :: s in
if Int.equal n 0 then out s else
match s with
| App (i,a,j) :: s ->
let nb = j - i + 1 in
if n >= nb then
aux lft (n - nb) s
else
let p = i+n in
if j >= p then App(p,a,j)::s else s
| Shift k :: s' -> aux (lft+k) n s'
| _ -> raise (Invalid_argument "Reductionops.Stack.tail")
in aux 0 n0 s0
let nth s p =
match strip_n_app p s with
| Some (_,el,_) -> el
| None -> raise Not_found
(** This function breaks the abstraction of Cst_stack ! *)
let best_state sigma (_,sk as s) l =
let rec aux sk def = function
|(cst, params, []) -> (cst, append_app_list (List.rev params) sk)
|(cst, params, (i,t)::q) -> match decomp sk with
| Some (el,sk') when EConstr.eq_constr sigma el t.(i) ->
if i = pred (Array.length t)
then aux sk' def (cst, params, q)
else aux sk' def (cst, params, (succ i,t)::q)
| _ -> def
in List.fold_left (aux sk) s l
let constr_of_cst_member f sk =
match f with
| Cst_const (c, u) -> mkConstU (c, EInstance.make u), sk
| Cst_proj p ->
match decomp sk with
| Some (hd, sk) -> mkProj (p, hd), sk
| None -> assert false
let zip ?(refold=false) sigma s =
let rec zip = function
| f, [] -> f
| f, (App (i,a,j) :: s) ->
let a' = if Int.equal i 0 && Int.equal j (Array.length a - 1)
then a
else Array.sub a i (j - i + 1) in
zip (mkApp (f, a'), s)
| f, (Case (ci,rt,br,cst_l)::s) when refold ->
zip (best_state sigma (mkCase (ci,rt,f,br), s) cst_l)
| f, (Case (ci,rt,br,_)::s) -> zip (mkCase (ci,rt,f,br), s)
| f, (Fix (fix,st,cst_l)::s) when refold ->
zip (best_state sigma (mkFix fix, st @ (append_app [|f|] s)) cst_l)
| f, (Fix (fix,st,_)::s) -> zip
(mkFix fix, st @ (append_app [|f|] s))
| f, (Cst (cst,_,_,params,cst_l)::s) when refold ->
zip (best_state sigma (constr_of_cst_member cst (params @ (append_app [|f|] s))) cst_l)
| f, (Cst (cst,_,_,params,_)::s) ->
zip (constr_of_cst_member cst (params @ (append_app [|f|] s)))
| f, (Shift n::s) -> zip (lift n f, s)
| f, (Proj (n,m,p,cst_l)::s) when refold ->
zip (best_state sigma (mkProj (p,f),s) cst_l)
| f, (Proj (n,m,p,_)::s) -> zip (mkProj (p,f),s)
| _, (Update _::_) -> assert false
in
zip s
end
(** The type of (machine) states (= lambda-bar-calculus' cuts) *)
type state = constr * constr Stack.t
type contextual_reduction_function = env -> evar_map -> constr -> constr
type reduction_function = contextual_reduction_function
type local_reduction_function = evar_map -> constr -> constr
type e_reduction_function = env -> evar_map -> constr -> evar_map * constr
type contextual_stack_reduction_function =
env -> evar_map -> constr -> constr * constr list
type stack_reduction_function = contextual_stack_reduction_function
type local_stack_reduction_function =
evar_map -> constr -> constr * constr list
type contextual_state_reduction_function =
env -> evar_map -> state -> state
type state_reduction_function = contextual_state_reduction_function
type local_state_reduction_function = evar_map -> state -> state
let pr_state (tm,sk) =
let open Pp in
let pr c = Termops.print_constr c in
h 0 (pr tm ++ str "|" ++ cut () ++ Stack.pr pr sk)
(*************************************)
(*** Reduction Functions Operators ***)
(*************************************)
let safe_evar_value = Evarutil.safe_evar_value
let safe_meta_value sigma ev =
try Some (Evd.meta_value sigma ev)
with Not_found -> None
let strong whdfun env sigma t =
let rec strongrec env t =
map_constr_with_full_binders sigma push_rel strongrec env (whdfun env sigma t) in
strongrec env t
let local_strong whdfun sigma =
let rec strongrec t = EConstr.map sigma strongrec (whdfun sigma t) in
strongrec
let rec strong_prodspine redfun sigma c =
let x = redfun sigma c in
match EConstr.kind sigma x with
| Prod (na,a,b) -> mkProd (na,a,strong_prodspine redfun sigma b)
| _ -> x
(*************************************)
(*** Reduction using bindingss ***)
(*************************************)
let eta = CClosure.RedFlags.mkflags [CClosure.RedFlags.fETA]
(* Beta Reduction tools *)
let apply_subst recfun env sigma refold cst_l t stack =
let rec aux env cst_l t stack =
match (Stack.decomp stack, EConstr.kind sigma t) with
| Some (h,stacktl), Lambda (_,_,c) ->
let cst_l' = if refold then Cst_stack.add_param h cst_l else cst_l in
aux (h::env) cst_l' c stacktl
| _ -> recfun sigma cst_l (substl env t, stack)
in aux env cst_l t stack
let stacklam recfun env sigma t stack =
apply_subst (fun _ _ s -> recfun s) env sigma false Cst_stack.empty t stack
let beta_app sigma (c,l) =
let zip s = Stack.zip sigma s in
stacklam zip [] sigma c (Stack.append_app l Stack.empty)
let beta_applist sigma (c,l) =
let zip s = Stack.zip sigma s in
stacklam zip [] sigma c (Stack.append_app_list l Stack.empty)
(* Iota reduction tools *)
type 'a miota_args = {
mP : constr; (* the result type *)
mconstr : constr; (* the constructor *)
mci : case_info; (* special info to re-build pattern *)
mcargs : 'a list; (* the constructor's arguments *)
mlf : 'a array } (* the branch code vector *)
let reducible_mind_case sigma c = match EConstr.kind sigma c with
| Construct _ | CoFix _ -> true
| _ -> false
(** @return c if there is a constant c whose body is bd
@return bd else.
It has only a meaning because internal representation of "Fixpoint f x
:= t" is Definition f := fix f x => t
Even more fragile that we could hope because do Module M. Fixpoint
f x := t. End M. Definition f := u. and say goodbye to any hope
of refolding M.f this way ...
*)
let magicaly_constant_of_fixbody env sigma reference bd = function
| Name.Anonymous -> bd
| Name.Name id ->
try
let (cst_mod,cst_sect,_) = Constant.repr3 reference in
let cst = Constant.make3 cst_mod cst_sect (Label.of_id id) in
let (cst, u), ctx = Universes.fresh_constant_instance env cst in
match constant_opt_value_in env (cst,u) with
| None -> bd
| Some t ->
let csts = EConstr.eq_constr_universes sigma (EConstr.of_constr t) bd in
begin match csts with
| Some csts ->
let subst = Universes.Constraints.fold (fun (l,d,r) acc ->
Univ.LMap.add (Option.get (Universe.level l)) (Option.get (Universe.level r)) acc)
csts Univ.LMap.empty
in
let inst = Instance.subst_fn (fun u -> Univ.LMap.find u subst) u in
mkConstU (cst, EInstance.make inst)
| None -> bd
end
with
| Not_found -> bd
let contract_cofix ?env sigma ?reference (bodynum,(names,types,bodies as typedbodies)) =
let nbodies = Array.length bodies in
let make_Fi j =
let ind = nbodies-j-1 in
if Int.equal bodynum ind then mkCoFix (ind,typedbodies)
else
let bd = mkCoFix (ind,typedbodies) in
match env with
| None -> bd
| Some e ->
match reference with
| None -> bd
| Some r -> magicaly_constant_of_fixbody e sigma r bd names.(ind) in
let closure = List.init nbodies make_Fi in
substl closure bodies.(bodynum)
(** Similar to the "fix" case below *)
let reduce_and_refold_cofix recfun env sigma refold cst_l cofix sk =
let raw_answer =
let env = if refold then Some env else None in
contract_cofix ?env sigma ?reference:(Cst_stack.reference sigma cst_l) cofix in
apply_subst
(fun sigma x (t,sk') ->
let t' =
if refold then Cst_stack.best_replace sigma (mkCoFix cofix) cst_l t else t in
recfun x (t',sk'))
[] sigma refold Cst_stack.empty raw_answer sk
let reduce_mind_case sigma mia =
match EConstr.kind sigma mia.mconstr with
| Construct ((ind_sp,i),u) ->
(* let ncargs = (fst mia.mci).(i-1) in*)
let real_cargs = List.skipn mia.mci.ci_npar mia.mcargs in
applist (mia.mlf.(i-1),real_cargs)
| CoFix cofix ->
let cofix_def = contract_cofix sigma cofix in
mkCase (mia.mci, mia.mP, applist(cofix_def,mia.mcargs), mia.mlf)
| _ -> assert false
(* contracts fix==FIX[nl;i](A1...Ak;[F1...Fk]{B1....Bk}) to produce
Bi[Fj --> FIX[nl;j](A1...Ak;[F1...Fk]{B1...Bk})] *)
let contract_fix ?env sigma ?reference ((recindices,bodynum),(names,types,bodies as typedbodies)) =
let nbodies = Array.length recindices in
let make_Fi j =
let ind = nbodies-j-1 in
if Int.equal bodynum ind then mkFix ((recindices,ind),typedbodies)
else
let bd = mkFix ((recindices,ind),typedbodies) in
match env with
| None -> bd
| Some e ->
match reference with
| None -> bd
| Some r -> magicaly_constant_of_fixbody e sigma r bd names.(ind) in
let closure = List.init nbodies make_Fi in
substl closure bodies.(bodynum)
(** First we substitute the Rel bodynum by the fixpoint and then we try to
replace the fixpoint by the best constant from [cst_l]
Other rels are directly substituted by constants "magically found from the
context" in contract_fix *)
let reduce_and_refold_fix recfun env sigma refold cst_l fix sk =
let raw_answer =
let env = if refold then Some env else None in
contract_fix ?env sigma ?reference:(Cst_stack.reference sigma cst_l) fix in
apply_subst
(fun sigma x (t,sk') ->
let t' =
if refold then
Cst_stack.best_replace sigma (mkFix fix) cst_l t
else t
in recfun x (t',sk'))
[] sigma refold Cst_stack.empty raw_answer sk
let fix_recarg ((recindices,bodynum),_) stack =
assert (0 <= bodynum && bodynum < Array.length recindices);
let recargnum = Array.get recindices bodynum in
try
Some (recargnum, Stack.nth stack recargnum)
with Not_found ->
None
(** Generic reduction function with environment
Here is where unfolded constant are stored in order to be
eventualy refolded.
If tactic_mode is true, it uses ReductionBehaviour, prefers
refold constant instead of value and tries to infer constants
fix and cofix came from.
It substitutes fix and cofix by the constant they come from in
contract_* in any case .
*)
let debug_RAKAM = ref (false)
let _ = Goptions.declare_bool_option {
Goptions.optdepr = false;
Goptions.optname =
"Print states of the Reductionops abstract machine";
Goptions.optkey = ["Debug";"RAKAM"];
Goptions.optread = (fun () -> !debug_RAKAM);
Goptions.optwrite = (fun a -> debug_RAKAM:=a);
}
let equal_stacks sigma (x, l) (y, l') =
let f_equal (x,lft1) (y,lft2) = eq_constr sigma (Vars.lift lft1 x) (Vars.lift lft2 y) in
let eq_fix (a,b) (c,d) = f_equal (mkFix a, b) (mkFix c, d) in
match Stack.equal f_equal eq_fix l l' with
| None -> false
| Some (lft1,lft2) -> f_equal (x, lft1) (y, lft2)
let rec whd_state_gen ?csts ~refold ~tactic_mode flags env sigma =
let open Context.Named.Declaration in
let rec whrec cst_l (x, stack) =
let () = if !debug_RAKAM then
let open Pp in
let pr c = Termops.print_constr c in
Feedback.msg_notice
(h 0 (str "<<" ++ pr x ++
str "|" ++ cut () ++ Cst_stack.pr cst_l ++
str "|" ++ cut () ++ Stack.pr pr stack ++
str ">>"))
in
let c0 = EConstr.kind sigma x in
let fold () =
let () = if !debug_RAKAM then
let open Pp in Feedback.msg_notice (str "<><><><><>") in
((EConstr.of_kind c0, stack),cst_l)
in
match c0 with
| Rel n when CClosure.RedFlags.red_set flags CClosure.RedFlags.fDELTA ->
(match lookup_rel n env with
| LocalDef (_,body,_) -> whrec Cst_stack.empty (lift n body, stack)
| _ -> fold ())
| Var id when CClosure.RedFlags.red_set flags (CClosure.RedFlags.fVAR id) ->
(match lookup_named id env with
| LocalDef (_,body,_) ->
whrec (if refold then Cst_stack.add_cst (mkVar id) cst_l else cst_l) (body, stack)
| _ -> fold ())
| Evar ev -> fold ()
| Meta ev ->
(match safe_meta_value sigma ev with
| Some body -> whrec cst_l (EConstr.of_constr body, stack)
| None -> fold ())
| Const (c,u as const) ->
reduction_effect_hook env sigma (EConstr.to_constr sigma x)
(lazy (EConstr.to_constr sigma (Stack.zip sigma (x,stack))));
if CClosure.RedFlags.red_set flags (CClosure.RedFlags.fCONST c) then
let u' = EInstance.kind sigma u in
(match constant_opt_value_in env (c, u') with
| None -> fold ()
| Some body ->
let body = EConstr.of_constr body in
if not tactic_mode
then whrec (if refold then Cst_stack.add_cst (mkConstU const) cst_l else cst_l)
(body, stack)
else (* Looks for ReductionBehaviour *)
match ReductionBehaviour.get (Globnames.ConstRef c) with
| None -> whrec (Cst_stack.add_cst (mkConstU const) cst_l) (body, stack)
| Some (recargs, nargs, flags) ->
if (List.mem `ReductionNeverUnfold flags
|| (nargs > 0 && Stack.args_size stack < nargs))
then fold ()
else (* maybe unfolds *)
if List.mem `ReductionDontExposeCase flags then
let app_sk,sk = Stack.strip_app stack in
let (tm',sk'),cst_l' =
whrec (Cst_stack.add_cst (mkConstU const) cst_l) (body, app_sk)
in
let rec is_case x = match EConstr.kind sigma x with
| Lambda (_,_, x) | LetIn (_,_,_, x) | Cast (x, _,_) -> is_case x
| App (hd, _) -> is_case hd
| Case _ -> true
| _ -> false in
if equal_stacks sigma (x, app_sk) (tm', sk')
|| Stack.will_expose_iota sk'
|| is_case tm'
then fold ()
else whrec cst_l' (tm', sk' @ sk)
else match recargs with
|[] -> (* if nargs has been specified *)
(* CAUTION : the constant is NEVER refold
(even when it hides a (co)fix) *)
whrec cst_l (body, stack)
|curr::remains -> match Stack.strip_n_app curr stack with
| None -> fold ()
| Some (bef,arg,s') ->
whrec Cst_stack.empty
(arg,Stack.Cst(Stack.Cst_const (fst const, u'),curr,remains,bef,cst_l)::s')
) else fold ()
| Proj (p, c) when CClosure.RedFlags.red_projection flags p ->
(let pb = lookup_projection p env in
let kn = Projection.constant p in
let npars = pb.Declarations.proj_npars
and arg = pb.Declarations.proj_arg in
if not tactic_mode then
let stack' = (c, Stack.Proj (npars, arg, p, Cst_stack.empty (*cst_l*)) :: stack) in
whrec Cst_stack.empty stack'
else match ReductionBehaviour.get (Globnames.ConstRef kn) with
| None ->
let stack' = (c, Stack.Proj (npars, arg, p, cst_l) :: stack) in
let stack'', csts = whrec Cst_stack.empty stack' in
if equal_stacks sigma stack' stack'' then fold ()
else stack'', csts
| Some (recargs, nargs, flags) ->
if (List.mem `ReductionNeverUnfold flags
|| (nargs > 0 && Stack.args_size stack < (nargs - (npars + 1))))
then fold ()
else
let recargs = List.map_filter (fun x ->
let idx = x - npars in
if idx < 0 then None else Some idx) recargs
in
match recargs with
|[] -> (* if nargs has been specified *)
(* CAUTION : the constant is NEVER refold
(even when it hides a (co)fix) *)
let stack' = (c, Stack.Proj (npars, arg, p, cst_l) :: stack) in
whrec Cst_stack.empty(* cst_l *) stack'
| curr::remains ->
if curr == 0 then (* Try to reduce the record argument *)
whrec Cst_stack.empty
(c, Stack.Cst(Stack.Cst_proj p,curr,remains,Stack.empty,cst_l)::stack)
else
match Stack.strip_n_app curr stack with
| None -> fold ()
| Some (bef,arg,s') ->
whrec Cst_stack.empty
(arg,Stack.Cst(Stack.Cst_proj p,curr,remains,
Stack.append_app [|c|] bef,cst_l)::s'))
| LetIn (_,b,_,c) when CClosure.RedFlags.red_set flags CClosure.RedFlags.fZETA ->
apply_subst (fun _ -> whrec) [b] sigma refold cst_l c stack
| Cast (c,_,_) -> whrec cst_l (c, stack)
| App (f,cl) ->